软件杯 深度学习花卉识别 - python 机器视觉 opencv

news/2024/5/20 2:39:10

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习花卉识别 - python 机器视觉 opencv

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt# -----------------生成图片路径和标签的List------------------------------------
train_dir = 'D:/ML/flower/input_data'roses = []
label_roses = []
tulips = []
label_tulips = []
dandelion = []
label_dandelion = []
sunflowers = []
label_sunflowers = []

定义函数get_files,获取图片列表及标签列表

# step1:获取所有的图片路径名,存放到# 对应的列表中,同时贴上标签,存放到label列表中。def get_files(file_dir, ratio):for file in os.listdir(file_dir + '/roses'):roses.append(file_dir + '/roses' + '/' + file)label_roses.append(0)for file in os.listdir(file_dir + '/tulips'):tulips.append(file_dir + '/tulips' + '/' + file)label_tulips.append(1)for file in os.listdir(file_dir + '/dandelion'):dandelion.append(file_dir + '/dandelion' + '/' + file)label_dandelion.append(2)for file in os.listdir(file_dir + '/sunflowers'):sunflowers.append(file_dir + '/sunflowers' + '/' + file)label_sunflowers.append(3)# step2:对生成的图片路径和标签List做打乱处理image_list = np.hstack((roses, tulips, dandelion, sunflowers))label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))# 利用shuffle打乱顺序temp = np.array([image_list, label_list])temp = temp.transpose()np.random.shuffle(temp)# 将所有的img和lab转换成listall_image_list = list(temp[:, 0])all_label_list = list(temp[:, 1])# 将所得List分为两部分,一部分用来训练tra,一部分用来测试val# ratio是测试集的比例n_sample = len(all_label_list)n_val = int(math.ceil(n_sample * ratio))  # 测试样本数n_train = n_sample - n_val  # 训练样本数tra_images = all_image_list[0:n_train]tra_labels = all_label_list[0:n_train]tra_labels = [int(float(i)) for i in tra_labels]val_images = all_image_list[n_train:-1]val_labels = all_label_list[n_train:-1]val_labels = [int(float(i)) for i in val_labels]return tra_images, tra_labels, val_images, val_labels**定义函数get_batch,生成训练批次数据**# --------------------生成Batch----------------------------------------------# step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab# 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像#   image_W, image_H, :设置好固定的图像高度和宽度#   设置batch_size:每个batch要放多少张图片#   capacity:一个队列最大多少定义函数get_batch,生成训练批次数据def get_batch(image, label, image_W, image_H, batch_size, capacity):# 转换类型image = tf.cast(image, tf.string)label = tf.cast(label, tf.int32)# make an input queueinput_queue = tf.train.slice_input_producer([image, label])label = input_queue[1]image_contents = tf.read_file(input_queue[0])  # read img from a queue# step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。image = tf.image.decode_jpeg(image_contents, channels=3)# step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)image = tf.image.per_image_standardization(image)# step4:生成batch# image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32# label_batch: 1D tensor [batch_size], dtype=tf.int32image_batch, label_batch = tf.train.batch([image, label],batch_size=batch_size,num_threads=32,capacity=capacity)# 重新排列label,行数为[batch_size]label_batch = tf.reshape(label_batch, [batch_size])image_batch = tf.cast(image_batch, tf.float32)return image_batch, label_batch**model.py——CN模型构建**import tensorflow as tf#定义函数infence,定义CNN网络结构#卷积神经网络,卷积加池化*2,全连接*2,softmax分类#卷积层1def inference(images, batch_size, n_classes):with tf.variable_scope('conv1') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),name = 'weights',dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv1 = tf.nn.relu(pre_activation, name=scope.name)# 池化层1# 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。with tf.variable_scope('pooling1_lrn') as scope:pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')# 卷积层2# 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()with tf.variable_scope('conv2') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv2 = tf.nn.relu(pre_activation, name='conv2')# 池化层2# 3x3最大池化,步长strides为2,池化后执行lrn()操作,# pool2 and norm2with tf.variable_scope('pooling2_lrn') as scope:norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')# 全连接层3# 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()with tf.variable_scope('local3') as scope:reshape = tf.reshape(pool2, shape=[batch_size, -1])dim = reshape.get_shape()[1].valueweights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)# 全连接层4# 128个神经元,激活函数relu()with tf.variable_scope('local4') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')# dropout层#    with tf.variable_scope('dropout') as scope:#        drop_out = tf.nn.dropout(local4, 0.8)# Softmax回归层# 将前面的FC层输出,做一个线性回归,计算出每一类的得分with tf.variable_scope('softmax_linear') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),name='softmax_linear', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),name='biases', dtype=tf.float32)softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')return softmax_linear# -----------------------------------------------------------------------------# loss计算# 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1# 返回参数:loss,损失值def losses(logits, labels):with tf.variable_scope('loss') as scope:cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,name='xentropy_per_example')loss = tf.reduce_mean(cross_entropy, name='loss')tf.summary.scalar(scope.name + '/loss', loss)return loss# --------------------------------------------------------------------------# loss损失值优化# 输入参数:loss。learning_rate,学习速率。# 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。def trainning(loss, learning_rate):with tf.name_scope('optimizer'):optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)global_step = tf.Variable(0, name='global_step', trainable=False)train_op = optimizer.minimize(loss, global_step=global_step)return train_op# -----------------------------------------------------------------------# 评价/准确率计算# 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。# 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。def evaluation(logits, labels):with tf.variable_scope('accuracy') as scope:correct = tf.nn.in_top_k(logits, labels, 1)correct = tf.cast(correct, tf.float16)accuracy = tf.reduce_mean(correct)tf.summary.scalar(scope.name + '/accuracy', accuracy)return accuracy**train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练**import input_dataimport model# 变量声明N_CLASSES = 4  # 四种花类型IMG_W = 64  # resize图像,太大的话训练时间久IMG_H = 64BATCH_SIZE = 20CAPACITY = 200MAX_STEP = 2000  # 一般大于10Klearning_rate = 0.0001  # 一般小于0.0001# 获取批次batchtrain_dir = 'F:/input_data'  # 训练样本的读入路径logs_train_dir = 'F:/save'  # logs存储路径# train, train_label = input_data.get_files(train_dir)train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)# 训练数据及标签train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 测试数据及标签val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 训练操作定义train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)train_loss = model.losses(train_logits, train_label_batch)train_op = model.trainning(train_loss, learning_rate)train_acc = model.evaluation(train_logits, train_label_batch)# 测试操作定义test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)test_loss = model.losses(test_logits, val_label_batch)test_acc = model.evaluation(test_logits, val_label_batch)# 这个是log汇总记录summary_op = tf.summary.merge_all()# 产生一个会话sess = tf.Session()# 产生一个writer来写log文件train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)# 产生一个saver来存储训练好的模型saver = tf.train.Saver()# 所有节点初始化sess.run(tf.global_variables_initializer())# 队列监控coord = tf.train.Coordinator()threads = tf.train.start_queue_runners(sess=sess, coord=coord)# 进行batch的训练try:# 执行MAX_STEP步的训练,一步一个batchfor step in np.arange(MAX_STEP):if coord.should_stop():break_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])# 每隔50步打印一次当前的loss以及acc,同时记录log,写入writerif step % 10 == 0:print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))summary_str = sess.run(summary_op)train_writer.add_summary(summary_str, step)# 每隔100步,保存一次训练好的模型if (step + 1) == MAX_STEP:checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)except tf.errors.OutOfRangeError:print('Done training -- epoch limit reached')finally:coord.request_stop()**test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果**import matplotlib.pyplot as pltimport modelfrom input_data import get_files# 获取一张图片def get_one_image(train):# 输入参数:train,训练图片的路径# 返回参数:image,从训练图片中随机抽取一张图片n = len(train)ind = np.random.randint(0, n)img_dir = train[ind]  # 随机选择测试的图片img = Image.open(img_dir)plt.imshow(img)plt.show()image = np.array(img)return image# 测试图片def evaluate_one_image(image_array):with tf.Graph().as_default():BATCH_SIZE = 1N_CLASSES = 4image = tf.cast(image_array, tf.float32)image = tf.image.per_image_standardization(image)image = tf.reshape(image, [1, 64, 64, 3])logit = model.inference(image, BATCH_SIZE, N_CLASSES)logit = tf.nn.softmax(logit)x = tf.placeholder(tf.float32, shape=[64, 64, 3])# you need to change the directories to yours.logs_train_dir = 'F:/save/'saver = tf.train.Saver()with tf.Session() as sess:print("Reading checkpoints...")ckpt = tf.train.get_checkpoint_state(logs_train_dir)if ckpt and ckpt.model_checkpoint_path:global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]saver.restore(sess, ckpt.model_checkpoint_path)print('Loading success, global_step is %s' % global_step)else:print('No checkpoint file found')prediction = sess.run(logit, feed_dict={x: image_array})max_index = np.argmax(prediction)if max_index == 0:result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])elif max_index == 1:result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])elif max_index == 2:result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])else:result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])return result# ------------------------------------------------------------------------if __name__ == '__main__':img = Image.open('F:/input_data/dandelion/1451samples2.jpg')plt.imshow(img)plt.show()imag = img.resize([64, 64])image = np.array(imag)print(evaluate_one_image(image))

5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


http://www.mrgr.cn/p/75240338

相关文章

细说夜莺监控系统告警自愈机制

虽说监控系统最侧重的功能是指标采集、存储、分析、告警,为了能够快速恢复故障,告警自愈机制也是需要重点投入建设的,所有可以固化为脚本的应急预案都可以使用告警自愈机制来快速驱动。夜莺开源项目从 v7 版本开始内置了告警自愈模块,本文将详细介绍告警自愈的原理和实现。…

掌握Android Fragment开发之魂:Fragment的深度解析(上)

Fragment是Android开发中用于构建动态和灵活界面的基石。它不仅提升了应用的模块化程度,还增强了用户界面的动态性和交互性,允许开发者将应用界面划分为多个独立、可重用的部分,每个部分都可以独立于其他部分进行操作。本文将从以下几个方面深…

【web网页制作】html+css旅游家乡河南开封主题网页制作(4页面)【附源码】

HTMLCSS家乡河南主题网页目录 🍔涉及知识🥤写在前面🍧一、网页主题🌳二、页面效果Page1 首页Page2 开封游玩Page 3 开封美食Page4 留言 🌈 三、网页架构与技术3.1 脑海构思3.2 整体布局3.3 技术说明书 🐋四…

程序员副业创富:业余时间解锁首笔财富里程碑

在这个充满机遇的数字时代,我,一个普通的程序猿,编程爱好者,终于在云端源想这个平台上收获了属于我的第一桶金。这是一个关于兼职、学习与成长的故事,希望能激发同在编程路上的你,勇敢迈出那一步。 先晒晒我的首笔收入:一个普通的周末,我像往常一样,泡上一杯咖啡,坐在…

(一)文本分类经典模型之CNN篇

这篇blog对NLP领域的基本任务文本分类的CNN经典模型做了梳理CNN源于计算机视觉研究,后来诸多学者将其应用于短文本分类,其基本结构如下图所示:由上图可知,基于CNN的短文本分类模型,通常包括输入层、卷积层、池化层、全连接层和输出层五部分,其中卷积层和池化层是最为关键…

抖音小店是什么?它和直播带货有什么区别和联系?一篇详解!

大家好,我是电商糖果 在网上大家都说抖音的流量大,在抖音做电商比较赚钱。 可是有很多人对抖音电商并不了解。 甚至搞不懂抖音小店是什么?它和直播带货的区别和联系也不清楚。 下面,糖果就来给大家好好解答一下这个问题。 抖音…

Django 4.x 智能分页get_elided_page_range

Django智能分页 分页效果 第1页的效果 第10页的效果 带输入框的效果 主要函数 # 参数解释 # number: 当前页码,默认:1 # on_each_side:当前页码前后显示几页,默认:3 # on_ends:首尾固定显示几页&#…

Apache DolphinScheduler 3.3.0 版本重磅更新提前看!

Apache DolphinScheduler 3.3.0版本终于要在万众期待中发布啦!本次发版将有重大功能更新,包括架构上的调整。 为了让广大用户提前尝鲜,社区特别准备了直播活动提前揭秘3.3.0版本中的重要更新,到时候你将会了解到这些信息:3.3.0版本的工作流引擎改进 任务执行流程的优化 架…

激光雕刻优化:利用RLE压缩技术提高雕刻效率与节省能源成本

什么是 RLE ?RLE 在激光雕刻应用实现代码:总结 什么是 RLE ? RLE 是 Run-Length Encoding(游程长度编码)的缩写。这是一种数据压缩技术,它通过减少连续重复的数据来减小文件的大小。RLE 在图像处理、无损…

【重塑世界的火种】制造业:从匠人之心到智能未来之旅

在人类文明的宏伟乐章中,有一段旋律始终激昂,它既古老又现代,既是力量的象征,也是智慧的结晶——这就是制造业,一个将梦想变为现实,将创意铸就为生活的神奇领域。今天,让我们一起走进这个塑造世…

【触想智能】工业级平板电脑五大特征与应用领域分析

工业级平板电脑是专供工业环境使用的工业控制计算机,也被称为工控一体机。工业级平板电脑基本性能及兼容性与商用平板电脑几乎相同,但是工业级平板电脑更注重在不同环境下的稳定性能,因此,工业级平板电脑与普通的商用平板电脑存在一定的区别。一、工业级平板电脑的五大特征…

2024软件测试自动化面试题(含答案)

1.如何把自动化测试在公司中实施并推广起来的? 选择长期的有稳定模块的项目 项目组调研选择自动化工具并开会演示demo案例,我们主要是演示selenium和robot framework两种。 搭建自动化测试框架,在项目中逐步开展自动化。 把该项目的自动化…

58微聊消息自动回复 – 58微聊自动回复机器人 – 浏览器插件

58同城上发布了产品,有咨询客户通过微聊联系我们,我们插件可以实现自动回复消息效果演示 58微聊消息自动回复,浏览器插件实现 #自动回复 #58同城 #58 – 抖音 (douyin.com) 功能列表关键词自动回复AI知识库自动回复下载插件 请联系微信:llike620 付费获取浏览器插件 原文地…

企业网站从传统服务器迁移到弹性云有什么优势呢?

现代企业对于网站和应用程序的可用性和性能要求越来越高,传统基础设施可能无法满足这些需求。弹性云作为一种新兴的云计算服务模式,对于企业网站的运行和管理带来了许多优势。下面是企业网站从传统服务器迁移到弹性云的五大优势: 灵活弹性&a…

黑马点评项目总结

登录 基于session登录 短信验证码登录 配置登录拦截器 向 Spring MVC 框架中添加拦截器,LoginInterceptor 是一个自定义的拦截器,用于拦截用户的登录请求。 excludePathPatterns这一句是设置拦截器需要放行的请求路径列表。 "/user/code", …

新版宝塔加密数据解密

宝塔更新了数据存储的方式,PanelForensics会尽快支持最近啊,fic中出现了宝塔,结果PanelForensics居然没有梭哈,这怎么行?? 于是我就一通分析,发现这个版本更新了架构,并且对密码的加解密是通过调用二进制依赖进行实现的 我这里就以mysql的密码为例,在新版本中,mysql的…

【挑战30天首通《谷粒商城》】-【第一天】03、简介-分布式基础概念

文章目录 课程介绍 ( 本章了解即可,可以略过)1、微服务简而言之: 2、集群&分布式&节点2.1、定义2.2、示例 3、远程调用4、负载均衡常见的负裁均衡算法: 5、服务注册/发现&注册中心6、配置中心7、服务熔断&服务降级7.1、服务熔断7.2、服务降级 8、AP…

数据库(MySQL)—— DML语句

数据库(MySQL)—— DML语句 什么是DML语句添加数据给全部字段添加数据批量添加数据 修改数据删除数据 什么是DML语句 在MySQL中,DML(Data Manipulation Language,数据操纵语言)语句主要用于对数据库中的数…

MongoDB索引

MongoDB索引 概述 索引支持在MongoDB中高效地执行查询。如果没有索引,MongoDB必须执行全集合扫描,即扫描集合中的每个文档,以选择与查询语句匹配的文档。这种扫描全集合的查询效率是非常低的,特别在处理大量的数据时,查询可以要花费几十秒甚至几分钟,这对网站的性能是非常…

Vue2工程化介绍

Vue2项目[基于vue-cli]工程化 【一】环境搭建06-Vue-cli - 刘清政 - 博客园 (cnblogs.com)安装node 使用npm/cnpm npm换源:npm config set registry https://registry.npmmirror.com 安装vue-cli cnpm install -g @vue/cli# 安装脚手架 cnpm install -g @vue/cli # 切换目录,…