Linux字符设备驱动开发
Linux 字符设备驱动开发是内核模块开发中的一个重要部分,主要用于处理字节流数据设备(如串口、键盘、鼠标等)。字符设备驱动的核心任务是定义如何与用户空间程序交互,通常通过一组文件操作函数进行。这些函数会映射到 open、read、write 等系统调用。
下面将详细介绍字符设备驱动开发的步骤,包括编写、注册、操作函数实现、测试等。
1. 字符设备驱动开发流程
步骤 1: 创建一个内核模块
字符设备驱动是作为内核模块加载的,可以动态加载到 Linux 内核中。我们从编写一个简单的字符设备驱动模块开始。
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h> // 文件系统支持
#include <linux/cdev.h> // 字符设备支持
#include <linux/uaccess.h> // 用户空间访问支持#define DEVICE_NAME "mychardev"
#define BUFFER_SIZE 1024static int major; // 主设备号
static char device_buffer[BUFFER_SIZE]; // 设备数据缓冲区
static struct cdev my_cdev; // 字符设备结构体
static dev_t dev_num; // 设备号// 文件操作函数
static int device_open(struct inode *inode, struct file *file) {printk(KERN_INFO "Device opened\n");return 0;
}static int device_release(struct inode *inode, struct file *file) {printk(KERN_INFO "Device closed\n");return 0;
}static ssize_t device_read(struct file *file, char __user *buffer, size_t len, loff_t *offset) {size_t bytes_read = len < BUFFER_SIZE ? len : BUFFER_SIZE;if (copy_to_user(buffer, device_buffer, bytes_read)) {return -EFAULT;}printk(KERN_INFO "Read %zu bytes from device\n", bytes_read);return bytes_read;
}static ssize_t device_write(struct file *file, const char __user *buffer, size_t len, loff_t *offset) {size_t bytes_write = len < BUFFER_SIZE ? len : BUFFER_SIZE;if (copy_from_user(device_buffer, buffer, bytes_write)) {return -EFAULT;}printk(KERN_INFO "Wrote %zu bytes to device\n", bytes_write);return bytes_write;
}// 文件操作函数结构体
static struct file_operations fops = {.owner = THIS_MODULE,.open = device_open,.release = device_release,.read = device_read,.write = device_write,
};// 模块加载时的初始化函数
static int __init mychardev_init(void) {// 动态分配主设备号和次设备号alloc_chrdev_region(&dev_num, 0, 1, DEVICE_NAME);major = MAJOR(dev_num);printk(KERN_INFO "Registered with major number %d\n", major);// 初始化 cdev 结构体并添加到系统cdev_init(&my_cdev, &fops);cdev_add(&my_cdev, dev_num, 1);return 0;
}// 模块卸载时的清理函数
static void __exit mychardev_exit(void) {// 删除 cdevcdev_del(&my_cdev);// 释放设备号unregister_chrdev_region(dev_num, 1);printk(KERN_INFO "Device unregistered\n");
}module_init(mychardev_init);
module_exit(mychardev_exit);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Example Author");
MODULE_DESCRIPTION("A simple character device driver");
步骤 2: 编写 Makefile
为了编译驱动模块,需要编写一个 Makefile 来调用内核构建系统。
obj-m += mychardev.oall:make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modulesclean:make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
步骤 3: 编译驱动
编译驱动:
make
生成的模块文件为 mychardev.ko。
步骤 4: 加载和卸载驱动
加载字符设备驱动模块:
sudo insmod mychardev.ko
检查是否成功加载驱动:
dmesg | tail
卸载模块:
sudo rmmod mychardev
步骤 5: 创建设备文件
Linux 使用设备文件与用户空间通信。驱动模块加载时,需要为字符设备创建设备文件。
首先通过 /proc/devices 查看分配的主设备号:
cat /proc/devices | grep mychardev
使用 mknod 创建设备文件:
sudo mknod /dev/mychardev c <major_number> 0
sudo chmod 666 /dev/mychardev
2. 文件操作函数实现
1. open 和 release 函数
这些函数会在打开和关闭设备文件时被调用。它们通常用于初始化设备或者释放设备资源。
open:每次用户空间程序通过open()调用打开设备文件时调用,通常用于设备初始化。release:每次关闭设备文件时调用,用于释放资源。
static int device_open(struct inode *inode, struct file *file) {printk(KERN_INFO "Device opened\n");return 0;
}static int device_release(struct inode *inode, struct file *file) {printk(KERN_INFO "Device closed\n");return 0;
}
2. read 和 write 函数
这些函数分别实现用户空间程序对设备的读取和写入操作。
read:读取设备的数据,用户空间调用read()时触发。write:将用户空间的数据写入设备,用户空间调用write()时触发。
static ssize_t device_read(struct file *file, char __user *buffer, size_t len, loff_t *offset) {size_t bytes_read = len < BUFFER_SIZE ? len : BUFFER_SIZE;if (copy_to_user(buffer, device_buffer, bytes_read)) {return -EFAULT;}printk(KERN_INFO "Read %zu bytes from device\n", bytes_read);return bytes_read;
}static ssize_t device_write(struct file *file, const char __user *buffer, size_t len, loff_t *offset) {size_t bytes_write = len < BUFFER_SIZE ? len : BUFFER_SIZE;if (copy_from_user(device_buffer, buffer, bytes_write)) {return -EFAULT;}printk(KERN_INFO "Wrote %zu bytes to device\n", bytes_write);return bytes_write;
}
3. 设备号分配与 cdev 结构
字符设备必须注册到内核中,以使内核能够通过设备号找到驱动程序。主设备号用于标识驱动程序,次设备号用于标识设备实例。
- 使用
alloc_chrdev_region动态分配设备号。 - 使用
cdev_init和cdev_add将字符设备添加到内核中。 - 使用
cdev_del删除设备。
alloc_chrdev_region(&dev_num, 0, 1, DEVICE_NAME);
cdev_init(&my_cdev, &fops);
cdev_add(&my_cdev, dev_num, 1);
4. 测试驱动
编写一个简单的用户空间测试程序来与字符设备驱动交互。
用户空间测试程序
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>#define DEVICE_PATH "/dev/mychardev"
#define BUFFER_SIZE 1024int main() {int fd;char write_buffer[BUFFER_SIZE] = "Hello, Kernel!";char read_buffer[BUFFER_SIZE];// 打开设备文件fd = open(DEVICE_PATH, O_RDWR);if (fd < 0) {perror("Failed to open the device");return EXIT_FAILURE;}// 写数据到设备printf("Writing to device: %s\n", write_buffer);if (write(fd, write_buffer, strlen(write_buffer)) < 0) {perror("Failed to write to the device");close(fd);return EXIT_FAILURE;}// 清空读取缓冲区memset(read_buffer, 0, sizeof(read_buffer));// 从设备读取数据if (read(fd, read_buffer, sizeof(read_buffer)) < 0) {perror("Failed to read from the device");close(fd);return EXIT_FAILURE;}// 输出从设备读取到的数据printf("Read from device: %s\n", read_buffer);// 关闭设备文件close(fd);return EXIT_SUCCESS;
}
当成功编写、加载并测试字符设备驱动时,用户空间程序会通过标准输出显示与驱动交互的结果。下面是驱动程序的纯输出示例,假设测试程序成功与字符设备驱动交互:
用户空间测试程序输出
Writing to device: Hello, Kernel!
Read from device: Hello, Kernel!
内核日志 (dmesg) 输出
[ 123.456789] Registered with major number 240
[ 123.456890] Device opened
[ 123.457123] Wrote 13 bytes to device
[ 123.457345] Read 13 bytes from device
[ 123.457567] Device closed
输出解释
-
用户空间测试程序输出:
- 测试程序将字符串
"Hello, Kernel!"写入字符设备,并随后读取回相同的字符串。 Writing to device: Hello, Kernel!表示程序已成功向设备写入数据。Read from device: Hello, Kernel!表示程序已成功从设备读取数据。
- 测试程序将字符串
-
内核日志 (
dmesg) 输出:Registered with major number 240表示字符设备驱动成功注册,并分配了主设备号 240。Device opened表示设备文件被打开,说明用户空间程序调用了open()系统调用。Wrote 13 bytes to device表示用户空间程序写入了 13 字节的数据到设备。Read 13 bytes from device表示用户空间程序从设备读取了 13 字节的数据。Device closed表示设备文件被关闭,说明用户空间程序调用了close()系统调用。
这些输出可以帮助你确认驱动程序的各个操作函数被正确调用,并且用户空间程序与字符设备的交互是成功的。
5. 总结
通过上述步骤可以开发一个简单的字符设备驱动程序。字符设备驱动的核心是通过 file _operations 结构体实现的操作函数,包括 open、read、write 和 release 等。在用户空间编写简单的测试程序,使用 open()、read()、write() 系统调用与字符设备进行交互,从而验证驱动程序的正确性。
