当前位置: 首页 > news >正文

【抽代复习笔记】27-群(二十一):子群与生成子群

【抱歉又鸽了那么久……因为这两个月太多事忙了,实在抱歉。

今后会尽量每个月稳定更4篇以上。】


定理3:设G是一个群,而H是G的非空有限子集,则 H ≤ G 当且仅当 对任意的a,b∈H,有a o b∈H。

证:必要性显然是成立的,若H ≤ G,则由子群的第一判定定理,对任意的a,b∈H,都有a o b∈H。

下证充分性:①因为对任意的a,b∈H,都有a o b∈H,所以满足了群公理的第一条;

②因为H是G的子集,其元素以及运算规律都能从群G中继承,因此H中元素的代数运算也适合结合律和消去律,这就满足了群公理的第二和第三条。

因此,根据群的第三判定定理【见专栏第11篇文章】,H关于G的乘法作成群,即H ≤ G。

 

定理4:

(1)在Sn中,奇偶置换各占一半,即|An| = |Sn|/2 = n!/2。

(2)An ≤ Sn(An为n次交错群)。

(证明暂略)

 

定理5:

设G是一个群,S是G的一个非空子集,则:

(S) = {a^m o b^n o ...... o c^k | a,b,...,c ∈ S,m,n,k∈Z}

是G的一个子群,且包含S的最小子群(称为S的生成子群)。

证:(1)任意 a1^m o b1^n o ...... o c1^k,a2^m o b2^n o ...... o c2^k∈(S),

①(a1^m o b1^n o ...... o c1^k) o (a2^m o b2^n o ...... o c2^k)

= a1^m o b1^n o ...... o c1^k o a2^m o b2^n o ...... o c2^k ∈ (S)(因为a1,b1,...,c2∈S,m,n,...,k∈Z);

②且当m = n = ...... = k = 0时,(a1^m o b1^n o ...... o c1^k) o (a2^m o b2^n o ...... o c2^k) = (a1^0 o b1^0 o ...... o c1^0) o (a2^0 o b2^0 o ...... o c2^0) = (e o e o ... o e) o (e o e o ... o e) = e o e = e,

其中e为G中的单位元,因此e∈(S),且1^m o b1^n o ...... o c1^k与a2^m o b2^n o ...... o c2^k互为逆元。

综上所述,由子群的第一判定定理,可得 (S) ≤ G。

(2)设G1是包含S的一个子群,任意的a^m o b^n o ...... o c^k∈(S),由于G1包含S,所以a,b,,..,c∈G1,因此由群的封闭性,可得a^m o b^n o ...... o c^k∈G1,所以(S)⊂G1。

 

例:在S3中,求下列子集的生成子群。

(1)S = {(1)};

(2)S = {(12)};

(3)S = {(12),(123)};

(4)S = {(13),(132)}。

解:(1)因S中只含有(1)一个元素,因此对任意的正整数m,n,...,z,都有(1)^m o (1)^n o ... o (1)^z = (1),所以S的生成子群为它本身,即为{(1)}。

(2)当a为奇数,(12)^a = (12);当a为偶数,(12)^a = (1),

因此对任意的正整数m,n,...,z,当m+n+...+z的值为奇数时,(12)^m o (12)^n o ... o (12)^z = (12)^(m+n+...+z) = (12);当m+n+...+z的值为偶数时,(12)^m o (12)^n o ... o (12)^z = (12)^(m+n+...+z) = (1);

因此S的生成子群为{(1),(12)}。

(3)由(2)知(12)的奇数次幂为(12),偶数次幂为(1);而(123)^1 = (123),(123)^2 = (132),(123)^3 = (1);(12) o (123) = (23),(12) o (132) = (13),

因此不管(12),(123)两个元素如何组合,都只能生成(1),(123),(132),(12),(13),(23)这六个元素,

所以S的生成子群为{(1),(123),(132),(12),(13),(23)} = S3。

(4)证明类似(3),S的生成子群也是S3本身。

 

(待续……)

 

 

 

 

 

 


http://www.mrgr.cn/news/21294.html

相关文章:

  • 图像处理基础篇-镜像仿射透视
  • C++学习,类的析构函数
  • 我的私人助理 | 办公小浣熊
  • 第二十一章 rust与动静态库的结合使用
  • 搭建自己的Discuz论坛
  • Docker 部署 Minio (图文并茂超详细)
  • 黑神话:游戏的诞生
  • C++开发基础之自定义异步日志库实现及性能测试
  • Linux block_device gendisk和hd_struct到底是个啥关系
  • 【docker】基于docker-compose 安装elasticsearch + kibana + ik分词器(8.10.4版本)
  • 基于yolov8的焊缝质量好坏系统python源码+onnx模型+评估指标曲线+精美GUI界面
  • jmeter之循环控制器使用
  • 项目管理的完美看板:TaskCafe
  • golang学习笔记08——如何调用阿里oss sdk实现访问对象存储?
  • 使用PowerShell限制Microsoft Exchange邮件大小
  • C++和OpenGL实现3D游戏编程【连载8】——纹理文字实现与优化
  • http模块 - 创建Web服务以及案例
  • C++隐式转换
  • TYPE-C USB设计
  • 【C++二分查找】1818. 绝对差值和