transformer架构详细详解

news/2024/5/17 12:28:14

一、transformer的贡献

transformer架构的贡献:该架构只使用自注意力机制,没有使用RNN或卷积网络。且可以实现并行计算,加快模型训练速度。

(将所有的循环层全部换成:multi-headed self-attention)

二、transformer架构

当前序列模型中编码器和解码器架构的效果会更好(encoder-decoder)。

1、编码器定义:

编码器会将一个输入(x1,x2,x3,x4....xn)的一个序列,表示为一个长度为n的序列(z1,z2,z3,z4...zn),其中每一个zt,表示的是xt的一个向量。若该序列为一个句子,则第xt就表示第xt个词。则zt就表示第t个词的向量表示。综上就是编码器的输出。

(通过这样的转换,就可以将用户的输入转换为向量表示,使得模型能够正确的处理)

2、解码器的定义:

解码器会拿到编码器的输出,然后会生成一个长为m(y1,y2,y3,....ym)的一个序列,需要注意的是:n和m可能是不一样长的。如:在将中文句子翻译成英文句子的时候,两种语言的长度可能是不一样的。

3、编码器和解码器的差异:

对于编码器而言:在生成对应的序列的时候,可能是一次性全部生成的。 但在解码器中,解码器生成序列的时候是一个一个元素生成的。这个过程叫做自回归(auto-regressivet)的一个模型。

4、自回归概念的解释

在一个模型中,你的输入又是你的输出。

实际举例:比如在一个实际的序列模型中,你想模型输入了一句话,经过编码器的处理,变成了一个向量序列z(z1,z2,z3....zn),然后将这个向量序列逐个传递给解码器,解码器得到z1后,根据z1就会得到y1;然后根据自回归原理,y1预测得到y2,y2预测y3,依次类推,就可以得到yn。

5、transformer与encoder-decoder之间的联系

transformer是使用了一个编码器和解码器的架构。更具体的解释为:transformer是将一些注意力和point-wise fully connected layers,一个一个堆在一起的。

既然是讲解transformer架构,那怎么能少了论文中的transformer架构图:

简单解释一下:

我们可以发现这个架构是有两个部分构成,分别是左边的编码器和右边的解码器。然后在编码器的下方,接收一个用户输入。 在解码器的下方,也有一个解码器输入,但是这个输入是比较特殊的,我们细看这个架构图,可以发现解码器的输入并不是input,而是output。其实这是因为在做预测的时候,解码器的输入其实就是编码器的输入。所以这是output,表示是的编码器的输出。然后解码器的输入是一个一个往后或往右移动的。

图中的左边N表示编码器这个整体有N个叠加在一起,右边的N作用雷同。

然后左边编码器的输出作为右边解码器的输入。

6、transformer中编码器的深入讲解

编码器是用n等于六个一样的层(layer),即transformer架构图中的编码器。每个layer中有两个子层(sub-layers)。第一个sub-layer叫做multi-head self-attention。第二sub-layer叫做position-wise fully connected feed-forwad network。对于每个子层,采用了残差连接。最后再使用一个layer notmalization。因为在编码器中使用了残差连接,且残差网络的需求是:输入和输出是一样的大小,如果输入和输出大小不一样,则需要进行投影。所以为了简单起见,论文中奖每一个层的输出的维度变为512,也就是说对一个词,不管是在那一层,就将该词对应的向量表示为512维。

正式基于上述的简单网络设计:

使得该架构可以通过调整n和每一层输出的长度维数这两个参数。

7、transformer中解码器的深入 理解

解码器的构成和编码器很像,也是n为6的同样的层构成。每个层中都有两个子层。但是不同的是:编码器中使用了第三个子层,该层同样是一个多头注意力机制,layer notmalization。在解码器中进行的是自回归预测。所以在训练解码器进行预测时候,不应该让解码器看到预测后的结果。

但是在注意力机制里面,可以看到完整的输入,这样就不能达到预测的效果。因此transformer的解决方法是:通过一个带掩码的注意力机制,这样做的目的是:当我们要让模型预测t时刻对应的结果时,模型不能知道t时刻以后的内容。这样就可以达到一个预测的效果。

三.transformer注意力相关知识介绍

1、transformer中注意力定义

注意力函数:是将query和一些关键值(key value)对,映射成一个输出(output)的一个函数。函数涉及到的query、key value 和output都是一些向量。

具体来说注意力机制的输出output是:value的一个加权和。所以这也说明了输出的维度是和value的维度是一样的。

既然output是value的加权和,那么权重是怎么计算得到?

权重是根据key和query的相似度进行计算的。

2、transformer中单个注意力的计算过程(scaled dot-product attention)

transformer中将注意力的计算过程叫做:缩放的点积注意力(scaled dot-product attention)。

这种计算注意力的方法query和key它的长度是等长的,都等于dk。value是dv。

具体的理论计算过程是:将每一个query和key做累积,可以简单的认为是两个向量做“点积”运算。然后再将累积的结果除以根号dk,然后再用一个softmax函数对处理后的结果进行运算得到该query的权重。然后将得到的权重作用到v中就得到输出。

实例的注意力计算过程:刚刚解释了注意力的计算过程,我们发现一个问题,如果我们仅仅是一个query,一个query的计算。则计算的速度是比较慢的。所以在实际计算注意力机制的时候:我们是将query写成一个矩阵(包含n个query),将key写成一个矩阵(包含m个key),这里需要注意的是:query的个数不一定等于key的个数。

①query矩阵的解释:

这时query矩阵是由n个长度为dk的向量构成的二维矩阵。

②key矩阵的解释:

这时key矩阵是由m个长度为dk的向量构成的二维矩阵。

当我们得到query的矩阵和key的矩阵,只需要用query的矩阵点积key矩阵的转置,就会得到一个新的n×m的矩阵(此时这个矩阵的每一行就代表着一个query和key的内积值)。然后再将得到的内积值,除以根号下dk,在将除以dk的结果经过softmax函数进行处理。然后将经过softmax处理后的结果乘以v(其中v是一个m行dv列的矩阵),最后的输出结果就是一个n行dv列的矩阵

注意力机制一般有两种:加型注意力机制(用于处理query和key不等长的情况)和点积注意力机制(transformer架构中的注意力机制就是基于这种注意力机制,但是除了一个根号dk),正是因为transformer架构中除以了一个数,所以transformer中的注意力机制叫做缩放点积注意力机制

3、transformer计算注意力的时候除以根号dk的解释

在论文中给出了详细的解释:当dk不是很大的时候(dk是指query和key向量对应的长度),可以不除根号dk。 但是当dk的值比较大时,就表明向量的长度比较大,所以将这两个向量做点积的时候,这些值比较大也可能比较小,这样就会造成计算得到的结果相对差距会变大。从而大致越大的值经过softmax函数处理后,会更加的接近1;越小的值经过softmax函数处理后,就会更加接近0;最终的结果就会使得计算得到的值是在聚集在“0端” 和“1端”这样就是的结果两级分化。这样的效果就会造成梯度消失或梯度爆炸。

transformer中注意力机制的计算图:

4.transformer中多头注意力机制(Multi-Head Attention)的计算过程

在论文中解释多头注意力机制的由来,是将query、key、value投影到一个低维h次,然后做h次的注意力函数。然后将每一个函数的输出并在一起,然后再投影来得到最终的输出。

论文中举出的公式:

通过以上公式我们可以看出:在计算多头注意力的时候,输入还是以前的q、k、v。但是输出是不同的头进行合并起来(concat),投影到wo里面。然后对每个头,通过一个不同的可以学习的wq,wk,wv投影到低维上面。

在论文中使用8个头,因为在计算注意力的时候,有残差连接,所以输出和出入维度至少是一样的。

所以在投影的时候,它投影的就是你的输出的维度除以h

在论文中因为设置的维度为512维,多头数为8,所以投影维度为512/8=64。

5、transformer中使用多头注意力机制的情况

①在编码器中使用,外部输入的信息经过添加位置编码后,转换为向量。然后将向量一分为三:query,value、key。通过多头注意力机制,将n组q,k,v作为输入,就会得到n个输出。在使用多头注意力机制的时候,会学习到n个不一样的距离空间出来,使得输出输出的东西是不一样的。

②在解码器中底部使用:在解码器中的利用和编码器中利用原理是相似的,但是解码器中多出一个掩码机制,这是因为解码器在预测第t个词的时候,是不能看到第t个词后面的信息。所以要将第t个词后的全部词对应的权重为0。

③在解码器的中间使用:需要注意的是:这时的注意力机制不在是自注意力机制(即q,k,v的来源是不一样的)。此时注意力机制输入的key和value是来自编码器的输出。然后query是来自解码器下一个(与transformer中解码器的结构图对应)attention的输入。这个注意力机制的应用,目的是根据在解码器输入的不一样向量,则会根据当前需要计算的向量,在编码器的输出里面去挑出与该变量最相关的东西,进行计算

四、transformer中位置前馈网络(position-wise feed-forward networks)讲解

1、位置前馈网络的简单介绍

位置前馈网络(position-wise feed-forward networks )其实就是MLP(多层感知机)。但是不一样的是把一个MLP对每一个词作用一次,且对每个词作用的是同一个MLP(这就是论文中point wise的意思)。

2、计算公式

公式解释:这个公式中xw1+b1表示一个线性层,然后使用max函数,将线性层的结果与0进行比较,选择较大的数,即表示的一个relu激活函数。然后将relu的结果与w2相乘,加上一个常数b2。从而构成一个新的线性层。

我们知道在论文中,注意力层他的输入:每一个query它对应的哪一个输出,它是长为512,那么就是说公式中的x向量的长度对应就是512,然后论文中的操作根据w1参数,将512投影为2048(即将x向量的维度扩大了四倍)。然后因为position-wise feed-forward networks用到了一个残差连接为了让输出维度和输出维度保持一致,所以会用参数w2将当前长度为2048的向量,投影为长度为512的向量。

五、transformer中Embeddings层 和 Softmax层

①embeddings层:因为我们输出模型的词(token),不能直接被模型识别,所以我们需要将他映射成一个向量(在论文映射成向量后,向量的长度为512)。

②在线性层的前面也需要一个embedding,且权重相同,且将权重乘以根号d(d表示向量对应的长度,论文中d为512)。

六、transformer中位置编码(Positional Encoding)

因为transformer架构中是利用attention提取序列的有效信息。虽然提取到了输入序列的有效信息,但是并不会有时序信息。transformer中解决这个问题方法是将输出序列的内容和时序信息进行结合,作为模型的输入。

论文中给出的计算位置信息的公式:

七、transformer的总结

在transformer中attention起到的作用就是把输入序列的有效信息抓取出来,做一次汇聚得到一个输出结果。此时汇聚得到的结果已经包含了序列中我需要的东西,然后聚合结果传入到位置前馈网络中,经过位置前馈网络的处理将得到的序列信息映射到对应的语义空间的时候,做一个语义转换。

但是在rnn神经网络中,是将输入的序列(x1,x2,..xn),将x1向量经过MLP单独处理后的结果y1,在将y1和下一个序列作为输入计算y2....这样的计算过程就会变慢,而且当输出序列太大时,会出现语义丢失。

下图是沐神画出的transformer和rnn在处理序列上的区别:

课程链接:Transformer论文逐段精读【论文精读】_哔哩哔哩_bilibili


http://www.mrgr.cn/p/48585252

相关文章

HTML5+JavaScript实现本地视频/音频播放器

HTML5JavaScript实现本地视频/音频播放器 HTML5 提供了本地视频和音频播放器的支持&#xff0c;通过 <video> 和 <audio> 标签&#xff0c;这些标签支持多种媒体格式&#xff0c;并且可以通过 JavaScript 进行控制&#xff0c;实现功能比较完整的本地视频音频播放器…

在 Linux 终端中创建目录

目录 ⛳️推荐 前言 在 Linux 中创建一个新目录 创建多个新目录 创建多个嵌套的子目录 测试你的知识 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站 前言 在本系列的这一部…

Objective-C网络数据捕获:使用MWFeedParser库下载Stack Overflow示例

概述 Objective-C开发中&#xff0c;网络数据捕获是一项常见而关键的任务&#xff0c;特别是在处理像RSS源这样的实时网络数据流时。MWFeedParser库作为一个优秀的解析工具&#xff0c;提供了简洁而强大的解决方案。本文将深入介绍如何利用MWFeedParser库&#xff0c;以高效、…

读所罗门的密码笔记21_读后总结与感想兼导读

读所罗门的密码笔记21_读后总结与感想兼导读1. 基本信息 所罗门的密码:AI时代的价值、权力与信任 Solomons Code 奥拉夫格罗思 马克尼兹伯格 著 中信出版社,2022年5月出版 1.1. 读薄率 书籍总字数257千字,笔记总字数37780字。 读薄率37780257000≈14.7% 1.2. 读厚方向千脑智能…

浅写个登录(无js文件)

全部代码如下&#xff0c;无需编写wxss文件&#xff0c;渲染都在style里面&#xff1a; <view style"height: 250rpx;width: 100%;"> <!-- 背景图片 --><view style"position: absolute; background-color: antiquewhite; height: 250rpx;width…

遥感卫星:探索地球的科技之旅

遥感卫星是人类探索地球、理解地球、保护地球的重要工具&#xff0c;其发展历程承载了人类对地球的探索与认知的历程。从最初的概念到如今的高科技应用&#xff0c;遥感卫星技术的发展见证了人类科技的不断进步与创新。 初心萌芽&#xff1a; 遥感卫星的发展始于20世纪中叶&…

Linux debian gdb dump

1.开发背景 记录 debian 下应用程序崩溃调试方法 2.开发需求 程序越界可以定位到越界的位置附近 3.开发环境 debian 操作系统&#xff0c;如果不支持需要查看是否存在对应的可执行文件 4.实现步骤 4.1 设置 dump 输出大小 ulimit -c unlimited # 设置输出大小 生成core 文…

【opencv】dnn示例-speech_recognition.cpp 使用DNN模块结合音频信号处理技术实现的英文语音识别...

模型下载地址&#xff1a; https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6 终端输出&#xff1a;&#xff08;audio6.mp3 、audio10.mp3&#xff09; [ERROR:00.002] global cap_ffmpeg_impl.hpp:1112 open VIDEOIO/FFMPEG: unsupported parameter…

Linux下SPI设备驱动实验:使用内核提供的读写SPI设备中的数据的函数

一. 简介 前面文章的学习&#xff0c;已经实现了 读写SPI设备中数据的功能。文章如下&#xff1a; Linux下SPI设备驱动实验&#xff1a;验证读写SPI设备中数据的函数功能-CSDN博客 本文来使用内核提供的读写SPI设备中的数据的API函数&#xff0c;来实现读写SPI设备中数据。 …

4*5的矩阵(C语言)

一、N-S流程图&#xff1b; 二、运行结果&#xff1b; 三、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int i 0;int j 0;int result 0;//嵌套循环输出&#xff1b;for (i 1; i < 4; i){//列…

【unity】【C#】游戏音乐播放和发布

今天我们来认识一下有关 unity 音乐的一些知识 我们先创建 AudioClips 文件夹&#xff0c;这个文件夹通常就是 unity 中存放音乐的文件夹&#xff0c;然后拖进音乐文件进去 这里为大家提供了两个音乐&#xff0c;有需要可以自取 百度网盘&#xff1a;https://pan.baidu.com/s…

Hotcoin4月16日上新热门资产:头部RWA技术提供方Centrifuge(CFG)

Hotcoin持续为全球600万用户发掘优质潜力资产&#xff0c;热门币种交易上热币。一文快速了解今日上新资产:Centrifuge(CFG) 推荐指数 8.2 交易对 CFG/USDT 交易时间 4月16日 19:00 资产赛道 RWA 项目简介 Centrifuge是一个去中心化资产融资协议&#xff0c;专注于释放现实世界资…

使用Python工具库SnowNLP对评论数据标注(二)

这一次用pandas处理csv文件 comments.csv import pandas as pd from snownlp import SnowNLPdf pd.read_csv("C:\\Users\\zhour\\Documents\\comments.csv")#{a: [1, 2, 3], b: [4, 5, 6], c: [7, 8, 9]}是个字典 emotions[] for txt in df[sentence]:s SnowNLP(…

二刷大数据(三)- Flink1.17

目录 Flink概念与SparkStreaming区别分层API 工作流程部署模式**Local Mode****Standalone Mode****YARN Mode****Kubernetes Mode****Application Mode** 运行架构stand alone 核心概念算子链任务槽 窗口窗口**窗口的目的与作用****时间窗口&#xff08;Time Windows&#xff…

uniapp中scroll-view初始化的时候 无法横向滚动到某个为止

项目需求 实现日历&#xff08;13天&#xff09;默认高亮第六天 并定位到第六 左边右边各六天&#xff08;可以滑动&#xff09; 直接上代码 <template><scroll-view class"scroll-X":show-scrollbar"true" :scroll-x"scrollable":…

C++的线程

#include<iostream> #include<thread> #include<unistd.h> using namespace std; void myrun() {while(true){cout<<"I am a thread"<<endl;sleep(1);} } int main() {thread t(myrun);t.join();return 0; } 如果不添加-lpthread就会报…

2024年华中杯数学建模竞赛ABC题思路分析

简单分析一下各个题目可能需要用到的方法和模型&#xff0c;完整代码和成品论文见文末 A题 太阳能路灯光伏板的朝向设计问题: 1. 球面几何、天文学相关知识,如赤纬角、太阳高度角、时角等概念和公式 2. 太阳辐射模型,根据太阳能辐射强度、大气衰减系数等计算地表太阳辐射强度…

Day09 React———— 第九天

ReactRoter 一个路径 path 对应一个组件 component 当我们在浏览器中访问一个 path 的时候&#xff0c;path 对应的组件会在页面中进行渲染 基础用法 import { createBrowserRouter, RouterProvider } from "react-router-dom"; const router createBrowserRoute…

如何在Vue3中使用H.265视频EasyPlayer.js流媒体播放器?

H5无插件流媒体播放器EasyPlayer属于一款高效、精炼、稳定且免费的流媒体播放器&#xff0c;可支持多种流媒体协议播放&#xff0c;可支持H.264与H.265编码格式&#xff0c;性能稳定、播放流畅&#xff0c;能支持WebSocket-FLV、HTTP-FLV&#xff0c;HLS&#xff08;m3u8&#…

3D可视化技术:研发基地的科技新篇章

在科技日新月异的今天&#xff0c;我们生活在一个充满无限可能性的时代。而在这个时代中&#xff0c;3D可视化技术正以其独特的魅力&#xff0c;引领着科技领域的新一轮变革。 3D可视化技术通过三维图像的方式&#xff0c;将现实世界或虚拟世界中的物体、场景等以立体、逼真的形…