强化学习QLearning 进行迷宫游戏和代码

news/2024/5/19 9:30:48

强化学习是机器学习里面的一个分支。它强调基于环境而探索行动、学习,以取得最大化的预期收益。其灵感来源于心理学中的行为主义理论,既有机体如何在环境给予的奖励或者惩罚的刺激下,逐步形成对刺激的预期,产生能够最大利益的习惯性行为。简而言之,强化学习就是让机器学着如何在环境中通过不断的试错、尝试,学习、累积经验拿到高分.

强化学习基本结构

强化学习致力于控制一个计算机智能体,使之在未知环境中完成任务目标。

下图中给出强化学习基本机构。在一个未知“迷宫”环境中,计算机算法软件(探索机器人控制大脑)基于自身的控制策略行动。基本结构包括:

(1)智能体(Agent):探索机器人大脑,智能体的结构可以是一个神经网络,也可以是一个简单的算法,智能体的输入通常是状态(State),输出通常是策略(Policy);

(2)动作(Actions):是指动作空间。对于机器人玩迷宫游戏,只有上下左右移动方向可行动,那Actions就是上、下、左、右;

(3)状态(State):就是智能体的输入,机器人在迷宫中的位置;

(4)奖励(Reward):机器人进入某个状态时,能给智能体带来正奖励或者负奖励;

(5)环境(Environment):就是指机器人所走的迷宫,能接收action,返回state和reward。

1、强化学习决策过程

马尔科夫决策过程(MDP)为求解强化学习问题提供了数学框架。几乎所有的强化学习问题都可以建模为MDP。

在强化学习中,agent与environment按顺序在互动。在时刻 t1 ,agent会接收到来自环境的一个observation(观察),获取状态s1,基于这个状态s1 ,agent会做出动作a1  ,然后这个动作作用在环境上,于是agent可以接收到一个奖赏rt+1,并且agent就会到达新的状态s2,以此方式持续下去。agent与environment之间的交互就是产生了一个序列,如下图所示。

强化学习迷宫Q-Learning算法决策实现过程,就是马尔科夫决策过程(MDP)过程的实现,实践过程如下图所示。

强化学习基本要素

基于上述迷宫的案例,我们可以整理出思路里面出现的强化学习要素:

2.4.1. 马尔可夫决策过程(MDP)模型要素

马尔可夫决策过程(MDP)包含5个模型要素,状态(state)、动作(action)、策略(policy)、奖励(reward)和回报(return):

(1)环境的状态s,状态是对环境的描述,正如机器人在迷宫中的位置,也就是t时刻环境的状态st,体现为环境状态集中的某一个状态,在智能体做出动作后,状态会发生变化;MDP所有状态的集合是状态空间,状态空间可以是离散或连续的。

S= s1,s2,s3,s4,……,sπ

(2)机器人的动作A,动作是对智能体行为的描述,是智能体决策的结果。t时刻机器人采取的动作At,是它的动作集中某一个动作;MDP所有可能动作的集合是动作空间,动作空间可以是离散或连续的。

A= a1,a2,a3,a4,……,aπ

(3)环境的奖励R,奖励是智能体给出动作后,环境对智能体的反馈。是当前时刻状态、动作和下个时刻状态的标量函数。

 t时刻机器人在状态st ,采取的动作at对应的奖励rt+1 ,会在t+1时刻得到;

R = R(st, at,st+1)

(4)机器人的策略(policy)π,策略是指代表机器人采取动作的依据,即机器人会依据策略π来选择动作。最常见的策略表达方式是一个条件概率分布π(a|s), 即在状态s时采取动作a的概率。即π(a|s)=P(At = a| st=s),此时概率大的动作被机器人选择的概率较高。

(5)环境的状态转化模型,可以理解为一个概率状态机,它可以表示为一个概率模型,即在状态s下采取动作a ,转到下一个状态s’的概率,表示为Pass’ 。

2.4.2. 贝尔曼方程及其要素

贝尔曼方程(Bellman Equation)也被称作动态规划方程(Dynamic Programming Equation),用于求解马尔可夫决策过程(MDP)过程。

贝尔曼方程是动态规划(Dynamic Programming)这些数学最佳化方法能够达到最佳化的必要条件。此方程把“决策问题在特定时间怎么取值”以“来自初始选择的报酬比从初始选择衍生的决策问题的值”的形式表示。借此这个方式把动态最佳化问题变成简单的子问题,而这些子问题遵守从贝尔曼所提出来的“最优原理”。

几乎所有的可以用最优控制理论(Optimal Control Theory)解决的问题也可以通过分析合适的贝尔曼方程得到解决。然而,贝尔曼方程通常指离散时间(discrete-time)最佳化问题的动态规划方程。

贝尔曼方程的三个要素,策略函数、状态价值函数、状态——行为值函数(Q函数)(简称为动作价值函数)。

(1)回报(return),回报是奖励随时间步的积累,在引入轨迹的概念后,回报也是轨迹上所有奖励的总和。

    

(2)折扣因素,奖励衰减因子(γ),在[0,1]之间。如果为0,则是贪婪法,即价值只由当前延时奖励决定,如果是1,则所有的后续状态奖励和当前奖励一视同仁。大多数时候,我们会取一个0到1之间的数字,即当前延时奖励的权重比后续奖励的权重大。

折扣因素主要作用:

避免连续任务造成回报G无限大;

区分即时奖励和未来奖励的重要程度。

(3)状态值函数  机器人在策略π和状态s时,采取行动后的状态所处的最佳的(程度)价值(value),一般用 表示,是一个期望函数。

价值函数 一般可以表示为下式,不同的算法会有对应的一些价值函数变种,但思路相同:

(4)状态——行为值函数(Q函数)

机器人在策略π和状态s时,采取行动后的行为的所处的最佳的程度,一般用  表示,也是一个期望函数。

根据策略π从状态s 开始采取行动a所获得的期望回报,也就是贝尔曼方程,如下式所述:

(5)探索率ϵ,这个比率主要用在强化学习训练迭代过程中,由于我们一般会选择使当前轮迭代价值最大的动作,但是这会导致一些较好的但我们没有执行过的动作被错过。因此我们在训练选择最优动作时,会有一定的概率ϵ不选择使当前轮迭代价值最大的动作,而选择其他的动作。

Q-Learning算法

时序差分学习 (temporal-difference learning, TD learning):指从采样得到的不完整的状态序列学习,该方法通过合理的 bootstrapping,先估计某状态在该状态序列(episode)完整后可能得到的 return,并在此基础上利用累进更新平均值的方法得到该状态的价值,再通过不断的采样来持续更新这个价值。

时间差分(TD) 学习是蒙特卡罗(MC) 思想和动态规划(DP) 的结合。与MC方法 类似,TD方法 可以直接从经验中学习,而不需要知道环境模型。与 DP 类似,TD方法基于其他学习的估计值来更新估计值,而不用等待最终的结果。首先从预测(prediction)问题出发,建立给定策略 [公式] 对应的值函数 [公式] 的估计。对于控制(control)问题,DP、TD以及MC方法都使用了 广义策略迭代(GPI)的某种形式。这些方法中的不同点主要体现在解决预测问题方面。

Q-learning一种TD(Time Difference)方法,也是一种Value-based的方法。所谓Value-based方法,就是先评估每个action的Q值(Value),再根据Q值求最优策略  的方法。

在Q -值函数包含了两个可以操作的因素。

首先是一个学习率 learning rate(α),它定义了一个旧的Q值将从新的Q值哪里学到的新Q占自身的多少比重。值为0意味着代理不会学到任何东西(旧信息是重要的),值为1意味着新发现的信息是唯一重要的信息。

下一个因素被称为折扣因子discount factor(γ),它定义了未来奖励的重要性。值为0意味着只考虑短期奖励,其中1的值更重视长期奖励。

公式可以变换为:

因此:

  是指旧Q值在newQ(s,a)之中所占得比重

  是指为本次行动学习到的奖励(行动本身带来的奖励和未来潜在的奖励)。

3.3. Q-table

Q-Learning最终目标是获得回报G,这样需要保存训练过程中的轨迹上所有奖励的总和。因此设计了Q-table用于存储Q(s,a) ,创建一个二维表,可以存储每个state中每个action的未来预期的最大奖励值。这样我们可以知道每个state下的最佳action。

如下图迷宫,每个state(这里指的是方块)允许四种可能性的action,即上、下、左、右。

这个table就叫做Q-table(Q指的是这个action的预期奖励)。迷宫的Q-table中的列有四个action(上下左右行为),行代表state,每个单元格的值将是特定状态(state)和行动(action)下未来预期的最大奖励值

4. 迷宫游戏代码结构

迷宫游戏代码有三部分组成:

maze_env 是迷宫环境,基于Python标准GUI库Tkinter开发

RL_brain 是Q-Learning的核心实现

run_maze 是控制执行算法的代码

maze_env.py

import numpy as np
import time
import syssys.setrecursionlimit(10000)
if sys.version_info.major ==2:import Tkinter as tk
else:import tkinter as tk
UNIT = 40 #像素
MAZE_H = 6 #网格高度
MAZE_W = 6 #网格宽度class Maze(object):def __init__(self):self.action_space = ['u','d','l','r']self.n_actions = len(self.action_space)# self.title('迷宫')# self.geometry('{0}x{1}'.format(MAZE_H*UNIT,MAZE_W*UNIT))# 初始化窗口 画布self.window = tk.Tk()self.canvas = tk.Canvas(self.window,bg='white',height= MAZE_H*UNIT,width = MAZE_W*UNIT)self._build_maze()def _build_maze(self):h = MAZE_H * UNITw = MAZE_W * UNIT#创建画布,设计宽和高#创建栅格# 画线for c in range(0, w, UNIT):self.canvas.create_line(c, 0, c, h)for r in range(0, h, UNIT):self.canvas.create_line(0, r, w, r)# 陷阱self.hells = [self._draw_rect(3, 2, 'black'),self._draw_rect(3, 3, 'black'),self._draw_rect(3, 4, 'black'),self._draw_rect(3, 5, 'black'),self._draw_rect(4, 5, 'black'),self._draw_rect(1, 0, 'black'),self._draw_rect(1, 1, 'black'),self._draw_rect(1, 2, 'black'),self._draw_rect(1, 4, 'black'),self._draw_rect(1, 5, 'black')]self.hell_coords = []for hell in self.hells:self.hell_coords.append(self.canvas.coords(hell))# 奖励self.oval = self._draw_rect(4, 5, 'yellow')# 玩家对象self.rect = self._draw_rect(0, 0, 'red')self.canvas.pack()# color 颜色def _draw_rect(self, x, y, color):center = UNIT / 2w = center - 5x_ = UNIT * x + centery_ = UNIT * y + centerreturn self.canvas.create_rectangle(x_ - w,y_ - w,x_ + w,y_ + w,fill=color)def reset(self):self.canvas.update()time.sleep(0.5)self.canvas.delete(self.rect)self.rect = self._draw_rect(0, 0, 'red')self.old_s = Nonereturn self.canvas.coords(self.rect)# return self.window.coords(self.rect)# 走下一步def step(self,action):s = self.canvas.coords(self.rect)base_action = np.array([0,0])if action == 0: #upif s[1]>UNIT:base_action[1] -=UNITelif action == 1: #downif s[1] <(MAZE_H -1) * UNIT:base_action[1] += UNITelif action == 2: #rightif s[0] <(MAZE_W -1) * UNIT:base_action[0] += UNITelif action == 3:  # leftif s[0] >  UNIT:base_action[0] -= UNIT# 根据策略移动红块self.canvas.move(self.rect,base_action[0],base_action[1])s_ = self.canvas.coords(self.rect) #next state# 判断是否得到奖励或惩罚if s_ ==self.canvas.coords(self.oval):reward = 1done = Trues_ = 'terminal'elif s_ in self.hell_coords:reward = -1done = Trues_ = 'terminal'else:reward = 0done = Falseself.old_s = sreturn  s_,reward,donedef rander(self):time.sleep(0.1)self.canvas.update()
def update():t=0for t in range(10):s = env.reset()print(s)while True:env.rander()a = 2s,r,done = env.step(a)t+=1# print(t)if done:break
if __name__ == '__main__':print(sys.getrecursionlimit())env = Maze()env.window.after(100,update)env.window.mainloop()

RL_brain.py 是Q-Learning的核心实现

import numpy as np
import pandas as pdclass QLearningTable:def __init__(self,actions,learning_rate=0.01,reward_decay=0.9,e_greedy=0.9):self.actions = actionsself.lr = learning_rateself.gamma = reward_decayself.epsilon = e_greedyself.q_table = pd.DataFrame(columns=self.actions,dtype=np.float64)print(self.q_table)def choose_action(self,observation):self.check_state_exist(observation)if np.random.uniform()<self.epsilon:state_action = self.q_table.loc[observation,:]# 防止相同列值时取第一个列,所以打乱列的顺序action = np.random.choice(state_action[state_action==np.max(state_action)].index)else:action = np.random.choice(self.actions)return actiondef learn(self,s,a,r,s_):self.check_state_exist(s_)q_predict = self.q_table.loc[s,a] # q估计if s_ !='terminal':q_target = r + self.gamma*self.q_table.loc[s_,:].max() # q现实else:q_target = rself.q_table.loc[s,a]  += self.lr *(q_target - q_predict)# 检查状态是否存在def check_state_exist(self,state):if (state not in self.q_table.index):self.q_table = self.q_table.append(pd.Series([0]*len(self.actions),index= self.q_table.columns,name = state,))

run_maze.py 是控制执行算法的代码

from maze_env import Maze
from QLearn.RL_brain import QLearningTable
import numpy as np
def update1():for episode in range(100):#获取初始坐标observation = env.reset()# print(type(observation))print(observation)while True:# 刷新环境env.rander()#  Rl基于观测选择下一个动作action = RL.choose_action(str(observation))print(action)#  执行这个动作得到反馈(下一个状态observation_ 奖励reward 是否结束done)observation_,reward, done = env.step(action)# RL更新状态表Q-tableRL.learn(str(observation),action,reward,str(observation_))observation = observation_if done:breakif __name__ == '__main__':env = Maze()RL = QLearningTable(actions=list(range(env.n_actions)))env.window.after(10,update1) # 设置10ms的延迟env.window.mainloop()

运行之后的效果图:

 


http://www.mrgr.cn/p/26425456

相关文章

七、Kafka源码分析之网络通信

1、生产者网络设计 架构设计图 2、生产者消息缓存机制 1、RecordAccumulator 将消息缓存到RecordAccumulator收集器中, 最后判断是否要发送。这个加入消息收集器&#xff0c;首先得从 Deque 里找到自己的目标分区&#xff0c;如果没有就新建一个批量消息 Deque 加进入 2、消…

【网络安全带你练爬虫-100练】第15练:模拟用户登录

目录 一、目标1&#xff1a;理清逻辑 二、目标2&#xff1a;将每一步用代码进行表示 三、网络安全O 一、目标1&#xff1a;理清逻辑 模拟登录的基本流程 1、进入入口程序 2、读取目标URL 3、请求加上线程 4、确定请求数据包 5、请求格式的确认 6、数据的处理与判断 二、目标…

Shell 排序法 - 改良的插入排序

说明 插入排序法由未排序的后半部前端取出一个值&#xff0c;插入已排序前半部的适当位置&#xff0c;概念简单但速度不快。 排序要加快的基本原则之一&#xff0c;是让后一次的排序进行时&#xff0c;尽量利用前一次排序后的结果&#xff0c;以加快排序的速度&#xff0c;Shel…

深度学习与神经网络

人工智能&#xff0c;机器学习&#xff0c;深度学习&#xff0c;神经网络&#xff0c;emmmm&#xff0c;傻傻分不清楚&#xff0c;这都啥呀&#xff0c;你知道吗&#xff1f;我不知道。你知道吗&#xff1f;我不知道。 来来来&#xff0c;接下来&#xff0c;整硬菜&#xff1a…

vue3自定义dialog createApp setup语法组件使用element

目录 index.vue <template><el-dialogcenterv-model"isVisible"width"650px":title"title":append-to-body"true"><div id"dialogMap_container"></div><template #footer><span class&q…

Chrome浏览器中的vue插件devtools的下载方式(使用Chrome应用商店/科学上网情况下)

目录 devtools对前端来说的好处——开发预览、远程调试、性能调优、Bug跟踪、断点调试等 下载步骤&#xff1a; 测试阶段&#xff1a; 最近做项目要使用devtools这个vue插件。 devtools对前端来说的好处——开发预览、远程调试、性能调优、Bug跟踪、断点调试等 下载步骤…

IT职场笔记

MySQL笔记之一致性视图与MVCC实现 一致性读视图是InnoDB在实现MVCC用到的虚拟结构&#xff0c;用于读提交&#xff08;RC&#xff09;和可重复度&#xff08;RR&#xff09;隔离级别的实现。 一致性视图没有物理结构&#xff0c;主要是在事务执行期间用来定义该事物可以看到什…

[JavaScript游戏开发] 2D二维地图绘制、人物移动、障碍检测

系列文章目录 第一章 2D二维地图绘制、人物移动、障碍检测 第二章 跟随人物二维动态地图绘制、自动寻径、小地图显示(人物红点显示) 第三章 绘制冰宫宝藏地图、人物鼠标点击移动、障碍检测 文章目录 系列文章目录前言一、列计划1.1、目标1.2、步骤 二、使用步骤2.1、准备素材(…

探索AI图像安全,助力可信AI发展

探索AI图像安全&#xff0c;助力可信AI发展 0. 前言1. 人工智能发展与安全挑战1.1 人工智能及其发展1.2 人工智能安全挑战 2. WAIC 2023 多模态基础大模型的可信 AI2.1 WAIC 2023 专题论坛2.2 走进合合信息 3. AI 图像安全3.1 图像篡改检测3.2 生成式图像鉴别3.3 OCR 对抗攻击技…

环境搭建-Ubuntu20.04.6系统TensorFlow BenchMark的GPU测试

1. 下载Ubuntu20.04.6镜像 登录阿里云官方镜像站&#xff1a;阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区 2. 测试环境 Server OS&#xff1a;Ubuntu 20.04.6 LTS Kernel: Linux 5.4.0-155-generic x86-64 Docker Version&#xff1a;24.0.5, build ced0996 docker-com…

【SQL应知应会】表分区(二)• Oracle版

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习&#xff0c;有基础也有进阶&#xff0c;有MySQL也有Oracle 分区表 • Oracle版 前言一、分区表1.什么是表分区…

Oracle 迁移 Hive 过程中遇到的问题总结

前言 最近一个小伙伴在做从 Oracle 到 Hive 的业务迁移工作,在迁移过程中属实遇到了一些坑,今天就来汇总一下这些坑,避免以后大家其他业务迁移的时候再出现类似的问题,即使出现了也可以拿过来进行对照解决。 问题1:Distinct window functions are not supported: count(…

Python案例分析|使用Python图像处理库Pillow处理图像文件

本案例通过使用Python图像处理库Pillow&#xff0c;帮助大家进一步了解Python的基本概念&#xff1a;模块、对象、方法和函数的使用 使用Python语言解决实际问题时&#xff0c;往往需要使用由第三方开发的开源Python软件库。 本案例使用图像处理库Pillow中的模块、对象来处理…

uniapp小程序,根据小程序的环境版本,控制的显页面功能按钮的示隐藏

需求&#xff1a;根据小程序环境控制控制页面某个功能按钮的显示隐藏&#xff1b; 下面是官方文档和功能实现的相关代码&#xff1a; 实现上面需要&#xff0c;用到了uni.getAccountInfoSync()&#xff1a; uni.getAccountInfoSync() 是一个 Uniapp 提供的同步方法&#xff0c…

微服务如何治理

微服务远程调用可能有如下问题&#xff1a; 注册中心宕机&#xff1b; 服务提供者B有节点宕机&#xff1b; 服务消费者A和注册中心之间的网络不通&#xff1b; 服务提供者B和注册中心之间的网络不通&#xff1b; 服务消费者A和服务提供者B之间的网络不通&#xff1b; 服务提供者…

操作系统_进程与线程(三)

目录 3. 同步与互斥 3.1 同步与互斥的基本概念 3.1.1 临界资源 3.1.2 同步 3.1.3 互斥 3.2 实现临界区互斥的基本方法 3.2.1 软件实现方法 3.2.1.1 算法一&#xff1a;单标志法 3.2.1.2 算法二&#xff1a;双标志法先检查 3.2.1.3 算法三&#xff1a;双标志法后检查 …

mysql的json处理

写在前面 需要注意&#xff0c;5.7以上版本才支持&#xff0c;但如果是生产环境需要使用的话&#xff0c;尽量使用8.0版本&#xff0c;因为8.0版本对json处理做了比较大的性能优化。你你可以使用select version();来查看版本信息。 本文看下MySQL的json处理。在正式开始让我们先…

使用GGML和LangChain在CPU上运行量化的llama2

Meta AI 在本周二发布了最新一代开源大模型 Llama 2。对比于今年 2 月发布的 Llama 1&#xff0c;训练所用的 token 翻了一倍&#xff0c;已经达到了 2 万亿&#xff0c;对于使用大模型最重要的上下文长度限制&#xff0c;Llama 2 也翻了一倍。 在本文&#xff0c;我们将紧跟趋…

AI聊天GPT三步上篮!

1、是什么&#xff1f; CHATGPT是OpenAI开发的基于GPT&#xff08;Generative Pre-trained Transformer&#xff09;架构的聊天型人工智能模型。也就是你问它答&#xff0c;根据网络抓去训练 2、怎么用&#xff1f; 清晰表达自己诉求&#xff0c;因为它就是一个AI助手&#…

Eclipse memory analyzer 分析GC dump日志定位代码问题

1、问题描述&#xff1a; 使用命令 jstat -gcutil [pid] 查看JVM GC日志&#xff0c;发现生产系统频繁FullGC&#xff0c;大概几分钟一次&#xff0c;而且系统响应速度变慢很多 再使用 free -g 查看服务器内存全部占用&#xff0c;猜测是内存溢出了 2、导出dump日志 jmap -du…