当前位置: 首页 > news >正文

TrustRAG:通过配置化模块化的检索增强生成(RAG)框架提高生成结果的可靠性和可追溯性

TrustRAG旨在风险感知的信息检索场景中提高生成内容的一致性和可信度。用户可以利用私有语料库构建自己的RAG应用程序,研究库中的RAG组件,并使用定制模块进行实验。论文展示了TrustRAG系统在摘要问答任务中的应用,并通过案例研究验证了其有效性。总体而言,TrustRAG通过语义增强索引、效用增强检索和引用增强生成,显著提高了RAG系统的可靠性和可信度。在这里插入图片描述

研究背景

  1. 研究问题:这篇文章要解决的问题是如何增强检索增强生成(RAG)系统的可信度。尽管RAG技术在提高答案准确性方面取得了显著进展,但生成结果的可信度仍然是一个挑战。
  2. 研究难点:该问题的研究难点包括:处理实时信息的缺失、领域知识的不足以及生成虚假答案的风险,这些因素导致在实际应用中生成结果的不可靠性。
  3. 相关工作:该问题的研究相关工作包括RAG框架的改进、源归属的改进以及各种开源系统的开发。例如,Self-RAG、ActiveRAG、CoRAG等框架旨在提高答案的准确性,而InstructRAG、LongCite、SelfCite等则专注于改进结果的可信度。此外,Langchain、LlamaIndex、LightRAG等开源系统支持RAG的开发和应用。

研究方法

这篇论文提出了TrustRAG框架,用于解决RAG系统可信度不高的问题。具体来说,TrustRAG从索引、检索和生成三个阶段进行改进:
在这里插入图片描述

Image

  1. 语义增强索引:为了解决现有文本分块方法导致的语义丢失问题,TrustRAG引入了语义增强分块策略。该策略首先使用大型语言模型(LLM)进行共指消解,以解决代词或不完全引用引起的歧义。其次,将文档中的时间字段标准化为基于发布日期的标准日期格式,以恢复丢失的语义信息。最后,支持高级语义分段技术,通过嵌入技术和大型语言模型动态识别语义边界,确保分块的高质量和上下文一致性。参见trustrag/modules/refiner/decontextualizer.py、trustrag/modules/chunks/semantic_chunk.py。
  2. 效用增强检索:传统的RAG系统中,检索到的文档相关性仅由向量相似性决定。TrustRAG引入了效用判断和细粒度证据提取两个关键创新:
    • 效用判断:通过精心设计提示,使用大型语言模型评估每个文档对用户查询和生成任务的相关性。这种评估超越了表面相似性,结合了更深层次的上下文理解,确保只选择最有用的文档。参见trustrag/modules/judger/llm_judger.py。
    • 细粒度证据提取:在识别有用文档后,TrustRAG通过细粒度证据提取提取最相关的句子。该过程利用模型蒸馏技术降低计算成本,同时保持高准确性和相关性。参见trustrag/modules/refiner/compressor.py。
  3. <

http://www.mrgr.cn/news/93284.html

相关文章:

  • 前端权限流程(基于rbac实现思想)
  • 数据结构基础之《(19)—矩阵处理》
  • conda环境搭建记录
  • C++ 测试案例
  • TypeScript(正在修改)
  • 【ORACLE】ORACLE19C在19.13版本前的一个严重BUG-24761824
  • HRNet的pt模型转rknn并实现前向推理
  • 【项目日记(八)】内存回收与联调
  • 并查集—数组实现
  • 全局异常处理器为什么不能处理过滤器异常,有那些解决方案
  • FLEXOO的传感器技术:从材料选择到生产工艺的全方位创新
  • Windows零门槛部署DeepSeek大模型:Ollama+7B参数模型本地推理全攻略
  • 在Ubuntu上搭建Samba服务,实现与windows之间的文件共享
  • 蓝桥杯真题
  • hi3516cv610适配AIC8800D80的连接路由器记录
  • leetcode1 两数之和 哈希表
  • Spring(三)容器-注入
  • FreeRTOS列表和列表项
  • 审批流AntV框架蚂蚁数据可视化X6饼图(注释详尽)
  • win11不能访问到共享文件