当前位置: 首页 > news >正文

曲线的曲率和挠率

目录

  • T1
  • T2
  • T3
  • T4
  • T5
  • T6

T1

证明: E 3 E^3 E3中的正则曲线 r ( t ) (t) (t)的曲率和挠率分别是

κ ( t ) = ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 \kappa(t)=\frac{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} κ(t)=r(t)3r(t)r′′(t)
τ ( t ) = ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ 2 \tau(t)=\frac{(\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))}{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|^2} τ(t)=r(t)r′′(t)2(r(t),r′′(t),r′′′(t))

证明:设 s s s是曲线 r ( t ) (t) (t)的弧长参数.则 s = s ( t ) s=s(t) s=s(t) t = t ( s ) t=t(s) t=t(s)互为反函数.由于空
间曲线的 Frenet 标架和曲率与(容许的)参数选取无关,故

t ( t ) : = t ( s ( t ) ) = d r ( t ( s ) ) d s = r ′ ( t ) d t d s , d t d s = 1 ∣ r ′ ( t ) ∣ t ˙ ( s ( t ) ) = r ′ ′ ( t ) ( d t d s ) 2 + r ′ ( t ) d 2 t d s 2 , n ( s ( t ) ) = 1 κ ( s ( t ) ) t ˙ ( s ( t ) ) , t ¨ ( s ( t ) ) = r ′ ′ ′ ( t ) ( d t d s ) 3 + 3 r ′ ′ ( t ) d t d s d 2 t d s 2 + r ′ ( t ) d 3 t d s 3 , b ( s ( t ) ) = t ( s ( t ) ) ∧ n ( s ( t ) ) = 1 κ ′ ′ ( s ( t ) ) t ( s ( t ) ) ∧ t ˙ ( s ( t ) ) = 1 κ ( s ( t ) ) r ′ ( t ) d t d s ∧ ( r ′ ′ ( t ) ( d t d s ) 2 + r ′ ( t ) d 2 t d s 2 ) = 1 κ ( s ( t ) ) ( d t d s ) 3 r ′ ( t ) ∧ r ′ ′ ( t ) \mathbf{t}(t):=\mathbf{t}(s(t))=\frac{d\mathbf{r}(t(s))}{ds}=\mathbf{r}'(t)\frac{dt}{ds},\quad\frac{dt}{ds}=\frac{1}{|\mathbf{r}'(t)|}\\ \dot{\mathbf{t}}(s(t))=\mathbf{r}^{\prime\prime}(t)(\frac{dt}{ds})^2+\mathbf{r}^{\prime}(t)\frac{d^2t}{ds^2},\quad\mathbf{n}(s(t))=\frac1{\kappa(s(t))}\dot{\mathbf{t}}(s(t)),\\\ddot{\mathbf{t}}(s(t))=\mathbf{r}^{\prime\prime\prime}(t)(\frac{dt}{ds})^3+3\mathbf{r}^{\prime\prime}(t)\frac{dt}{ds}\frac{d^2t}{ds^2}+\mathbf{r}^{\prime}(t)\frac{d^3t}{ds^3},\\\mathbf{b}(s(t))=\mathbf{t}(s(t))\wedge\mathbf{n}(s(t))=\frac1{\kappa^{\prime\prime}(s(t))}\mathbf{t}(s(t))\wedge\dot{\mathbf{t}}(s(t))\\=\frac1{\kappa(s(t))}\mathbf{r}'(t)\frac{dt}{ds}\wedge(\mathbf{r}''(t)(\frac{dt}{ds})^2+\mathbf{r}'(t)\frac{d^2t}{ds^2})\\=\frac1{\kappa(s(t))}(\frac{dt}{ds})^3\mathbf{r}'(t)\wedge\mathbf{r}''(t) t(t):=t(s(t))=dsdr(t(s))=r(t)dsdt,dsdt=r(t)1t˙(s(t))=r′′(t)(dsdt)2+r(t)ds2d2t,n(s(t))=κ(s(t))1t˙(s(t)),t¨(s(t))=r′′′(t)(dsdt)3+3r′′(t)dsdtds2d2t+r(t)ds3d3t,b(s(t))=t(s(t))n(s(t))=κ′′(s(t))1t(s(t))t˙(s(t))=κ(s(t))1r(t)dsdt(r′′(t)(dsdt)2+r(t)ds2d2t)=κ(s(t))1(dsdt)3r(t)r′′(t)

从而,曲率
κ ( t ) = κ ( s ( t ) ) = ( d t d s ) 3 ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ = ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 . \kappa(t)=\kappa(s(t))=(\frac{dt}{ds})^3|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|=\frac{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}. κ(t)=κ(s(t))=(dsdt)3r(t)r′′(t)=r(t)3r(t)r′′(t).
由于 t ˙ ( s ) = κ ( s ) n ( s ) \dot{\mathbf{t}}(s)=\kappa(s)\mathbf{n}(s) t˙(s)=κ(s)n(s),故
t ¨ ( s ) = κ ( s ) n ( s ) + κ ( s ) n ˙ ( s ) = κ ˙ ( s ) n ( s ) + κ ( s ) ( − κ ( s ) t ( s ) + τ ( s ) b ( s ) ) \ddot{\mathbf{t}}(s)=\kappa(s)\mathbf{n}(s)+\kappa(s)\dot{\mathbf{n}}(s)=\dot{\kappa}(s)\mathbf{n}(s)+\kappa(s)(-\kappa(s)\mathbf{t}(s)+\tau(s)\mathbf{b}(s)) t¨(s)=κ(s)n(s)+κ(s)n˙(s)=κ˙(s)n(s)+κ(s)(κ(s)t(s)+τ(s)b(s))

= − κ ( s ) 2 t ( s ) + κ ˙ ( s ) n ( s ) + κ ( s ) τ ( s ) b ( s ) . =-\kappa(s)^2\mathbf{t}(s)+\dot{\kappa}(s)\mathbf{n}(s)+\kappa(s)\tau(s)\mathbf{b}(s). =κ(s)2t(s)+κ˙(s)n(s)+κ(s)τ(s)b(s).

从而,
κ ( s ( t ) ) τ ( s ( t ) ) = ⟨ t ¨ ( s ( t ) ) , b ( s ( t ) ) ⟩ = ⟨ r ′ ′ ′ ( t ) ( d t d s ) 3 + 3 r ′ ′ ( t ) d t d s d 2 t d s 2 + r ′ ( t ) d 3 t d s 3 , 1 κ ( s ( t ) ) t ( s ( t ) ) ∧ t ˙ ( s ( t ) ) ⟩ = 1 κ ( s ( t ) ) ( d t d s ) 6 ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) . \begin{aligned} \kappa(s(t))\tau(s(t))&=\langle\ddot{\mathbf{t}}(s(t)),\mathbf{b}(s(t))\rangle\\ &=\langle\mathbf{r}^{\prime\prime\prime}(t)(\frac{dt}{ds})^3+3\mathbf{r}^{\prime\prime}(t)\frac{dt}{ds}\frac{d^2t}{ds^2}+\mathbf{r}^{\prime}(t)\frac{d^3t}{ds^3},\frac1{\kappa(s(t))}\mathbf{t}(s(t))\wedge\dot{\mathbf{t}}(s(t))\rangle\\&=\frac1{\kappa(s(t))}(\frac{dt}{ds})^6(\mathbf{r}^{\prime}(t),\mathbf{r}^{\prime\prime}(t),\mathbf{r}^{\prime\prime\prime}(t)).\end{aligned} κ(s(t))τ(s(t))=t¨(s(t)),b(s(t))⟩=r′′′(t)(dsdt)3+3r′′(t)dsdtds2d2t+r(t)ds3d3t,κ(s(t))1t(s(t))t˙(s(t))⟩=κ(s(t))1(dsdt)6(r(t),r′′(t),r′′′(t)).

因此,

τ ( t ) = τ ( s ( t ) ) = 1 κ ( t ) 2 1 ∣ r ′ ( t ) ∣ 6 ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) = ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ 2 . \tau(t)=\tau(s(t))=\frac1{\kappa(t)^2}\frac1{|\mathbf{r}'(t)|^6}(\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))=\frac{(\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))}{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|^2}. τ(t)=τ(s(t))=κ(t)21r(t)61(r(t),r′′(t),r′′′(t))=r(t)r′′(t)2(r(t),r′′(t),r′′′(t)).

注:任意参数曲线 r ( t ) (t) (t)的 Frenet 标架为 { r ( t ) ; t ( t ) , n ( t ) , b ( t ) } \{\mathbf{r}(t);\mathbf{t}(t),\mathbf{n}(t),\mathbf{b}(t)\} {r(t);t(t),n(t),b(t)},其中
t ( t ) = r ′ ( t ) ∣ r ′ ( t ) ∣ = ( x ′ x ′ 2 + y ′ 2 + z ′ 2 , y ′ x ′ 2 + y ′ 2 + z ′ 2 , x ′ x ′ 2 + y ′ 2 + z ′ 2 ) \mathbf{t}(t)=\frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}=(\frac{x'}{\sqrt{x'^2+y'^2+z'^2}},\frac{y'}{\sqrt{x'^2+y'^2+z'^2}},\frac{x'}{\sqrt{x'^2+y'^2+z'^2}}) t(t)=r(t)r(t)=(x′2+y′2+z′2 x,x′2+y′2+z′2 y,x′2+y′2+z′2 x)
n ( t ) = r ′ ′ ( t ) ∣ r ′ ′ ( t ) ∣ \mathbf{n}(t)=\frac{\mathbf{r}''(t)}{|\mathbf{r}''(t)|} n(t)=r′′(t)r′′(t)
b ( t ) = r ′ ( t ) ∧ r ′ ′ ( t ) ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ \mathbf{b}(t)=\frac{\mathbf{r}'(t)\wedge\mathbf{r}''(t)}{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|} b(t)=r(t)r′′(t)r(t)r′′(t)



T2

求 下 列 曲 线 的 曲 率 和 挠 率 :

( 1 ) r ( t ) = ( a cosh ⁡ t , a sinh ⁡ t , b t ) ( a > 0 ) ; ( 1) \textbf{ r}( t) = ( a\cosh t, a\sinh t, bt) ( a> 0) ; (1) r(t)=(acosht,asinht,bt)(a>0);
( 2 ) r ( t ) = ( 3 t − t 2 , 3 t 2 , 3 t + t 2 ) ; ( 2) \textbf{ r}( t) = ( 3t- t^2, 3t^2, 3t+ t^2) ; (2) r(t)=(3tt2,3t2,3t+t2);
( 3 ) r ( t ) = ( a ( 1 − sin ⁡ t ) , a ( 1 − cos ⁡ t ) , b t ) ( a > 0 ) ; ( 3) \textbf{ r}( t) = ( a( 1- \sin t) , a( 1- \cos t) , bt) ( a> 0) ; (3) r(t)=(a(1sint),a(1cost),bt)(a>0);
( 4 ) r ( t ) = ( a t , 2 a log ⁡ t , a t ) ( a > 0 ) . ( 4) \textbf{ r}( t) = ( at, \sqrt {2}a\log t, \frac at) ( a> 0) . (4) r(t)=(at,2 alogt,ta)(a>0).

(1)直接计算,得
r ′ ( t ) = ( a sinh ⁡ t , a cosh ⁡ t , b ) \mathbf{r}^\prime(t)=(a\sinh t,a\cosh t,b) r(t)=(asinht,acosht,b)

r ′ ′ ( t ) = ( a cosh ⁡ t , a sinh ⁡ t , 0 ) \mathbf{r}^{\prime\prime}(t)=(a\cosh t,a\sinh t,0) r′′(t)=(acosht,asinht,0)

r ′ ′ ′ ( t ) = ( a sinh ⁡ t , a cosh ⁡ t , 0 ) \mathbf{r}^{\prime\prime\prime}(t)=(a\sinh t,a\cosh t,0) r′′′(t)=(asinht,acosht,0)

从而,

∣ r ′ ( t ) ∣ = a 2 cosh ⁡ 2 t + b 2 , |\mathbf{r}'(t)|=\sqrt{a^2\cosh2t+b^2}, r(t)=a2cosh2t+b2 ,

r ′ ( t ) ∧ r ′ ′ ( t ) = ( − a b sinh ⁡ t , a b cosh ⁡ t , − a 2 ) , \mathbf{r}^{\prime}(t)\wedge\mathbf{r}^{\prime\prime}(t)=(-ab\sinh t,ab\cosh t,-a^2), r(t)r′′(t)=(absinht,abcosht,a2),

∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ = a b 2 cosh ⁡ 2 t + a 2 , |\mathbf{r}^{\prime}(t)\wedge\mathbf{r}^{\prime\prime}(t)|=a\sqrt{b^{2}\cosh2t+a^{2}}, r(t)r′′(t)=ab2cosh2t+a2 ,

( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ′ ( t ) ) = ⟨ r ′ ( t ) ∧ r ′ ′ ( t ) , r ′ ′ ′ ′ ( t ) ⟩ = a 2 b . (\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}''''(t))=\langle\mathbf{r}'(t)\wedge\mathbf{r}''(t),\mathbf{r}''''(t)\rangle=a^2b. (r(t),r′′(t),r′′′′(t))=r(t)r′′(t),r′′′′(t)⟩=a2b.

故曲率

κ ( t ) = ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 = a b 2 cosh ⁡ 2 t + a 2 ( a 2 cosh ⁡ 2 t + b 2 ) 3 2 , \kappa(t)=\frac{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}=\frac{a\sqrt{b^2\cosh2t+a^2}}{(a^2\cosh2t+b^2)^{\frac32}}, κ(t)=r(t)3r(t)r′′(t)=(a2cosh2t+b2)23ab2cosh2t+a2 ,

挠率

τ ( t ) = ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ 2 = b b 2 cosh ⁡ 2 t + a 2 . \tau(t)=\frac{(\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))}{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|^2}=\frac{b}{b^2\cosh2t+a^2}. τ(t)=r(t)r′′(t)2(r(t),r′′(t),r′′′(t))=b2cosh2t+a2b.



T3

求 下 列 曲 线 的 曲 率 和 挠 率 :

( 1 ) r ( t ) = ( a cosh ⁡ t , a sinh ⁡ t , b t ) ( a > 0 ) ; ( 1) \textbf{ r}( t) = ( a\cosh t, a\sinh t, bt) ( a> 0) ; (1) r(t)=(acosht,asinht,bt)(a>0);
( 2 ) r ( t ) = ( 3 t − t 2 , 3 t 2 , 3 t + t 2 ) ; ( 2) \textbf{ r}( t) = ( 3t- t^2, 3t^2, 3t+ t^2) ; (2) r(t)=(3tt2,3t2,3t+t2);
( 3 ) r ( t ) = ( a ( 1 − sin ⁡ t ) , a ( 1 − cos ⁡ t ) , b t ) ( a > 0 ) ; ( 3) \textbf{ r}( t) = ( a( 1- \sin t) , a( 1- \cos t) , bt) ( a> 0) ; (3) r(t)=(a(1sint),a(1cost),bt)(a>0);
( 4 ) r ( t ) = ( a t , 2 a log ⁡ t , a t ) ( a > 0 ) . ( 4) \textbf{ r}( t) = ( at, \sqrt {2}a\log t, \frac at) ( a> 0) . (4) r(t)=(at,2 alogt,ta)(a>0).

(2)直接计算,得

r ′ ( t ) = ( 3 − 2 t , 6 t , 3 + 2 t ) , \mathbf{r}'(t)=(3-2t,6t,3+2t), r(t)=(32t,6t,3+2t),
r ′ ′ ( t ) = ( − 2 , 6 , 2 ) , \mathbf{r}''(t)=(-2,6,2), r′′(t)=(2,6,2),
r ′ ′ ′ ( t ) = 0 \mathbf{r}^{\prime\prime\prime}(t)=\mathbf{0} r′′′(t)=0
从而,
∣ r ′ ( t ) ∣ = 2 ( 4 t 2 + 18 t + 9 ) |\mathbf{r}'(t)|=\sqrt{2(4t^2+18t+9)} r(t)=2(4t2+18t+9)
r ′ ( t ) ∧ r ′ ′ ( t ) = ( − 18 , − 12 , 18 ) \mathbf{r}'(t)\wedge\mathbf{r}''(t)=(-18,-12,18) r(t)r′′(t)=(18,12,18)
∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ = 6 22 |\mathbf{r}'(t)\wedge\mathbf{r}''(t)|=6\sqrt{22} r(t)r′′(t)=622
( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) = 0 (\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))=0 (r(t),r′′(t),r′′′(t))=0

故曲率

κ ( t ) = ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 = 3 11 ( 4 t 2 + 18 t + 9 ) 3 2 \kappa(t)=\frac{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}=\frac{3\sqrt{11}}{(4t^2+18t+9)^{\frac32}} κ(t)=r(t)3r(t)r′′(t)=(4t2+18t+9)23311

挠率

τ ( t ) = ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ 2 = 0. \tau(t)=\frac{(\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))}{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|^2}=0. τ(t)=r(t)r′′(t)2(r(t),r′′(t),r′′′(t))=0.



T4

求 下 列 曲 线 的 曲 率 和 挠 率 :

( 1 ) r ( t ) = ( a cosh ⁡ t , a sinh ⁡ t , b t ) ( a > 0 ) ; ( 1) \textbf{ r}( t) = ( a\cosh t, a\sinh t, bt) ( a> 0) ; (1) r(t)=(acosht,asinht,bt)(a>0);
( 2 ) r ( t ) = ( 3 t − t 2 , 3 t 2 , 3 t + t 2 ) ; ( 2) \textbf{ r}( t) = ( 3t- t^2, 3t^2, 3t+ t^2) ; (2) r(t)=(3tt2,3t2,3t+t2);
( 3 ) r ( t ) = ( a ( 1 − sin ⁡ t ) , a ( 1 − cos ⁡ t ) , b t ) ( a > 0 ) ; ( 3) \textbf{ r}( t) = ( a( 1- \sin t) , a( 1- \cos t) , bt) ( a> 0) ; (3) r(t)=(a(1sint),a(1cost),bt)(a>0);
( 4 ) r ( t ) = ( a t , 2 a log ⁡ t , a t ) ( a > 0 ) . ( 4) \textbf{ r}( t) = ( at, \sqrt {2}a\log t, \frac at) ( a> 0) . (4) r(t)=(at,2 alogt,ta)(a>0).

(3)直接计算,得

r ′ ( t ) = ( − a cos ⁡ t , a sin ⁡ t , b ) , r ′ ′ ( t ) = ( a sin ⁡ t , a cos ⁡ t , 0 ) , r ′ ′ ′ ( t ) = ( a cos ⁡ t , − a sin ⁡ t , 0 ) . \mathbf{r}'(t)=(-a\cos t,a\sin t,b),\\\mathbf{r}''(t)=(a\sin t,a\cos t,0),\\\mathbf{r}'''(t)=(a\cos t,-a\sin t,0). r(t)=(acost,asint,b),r′′(t)=(asint,acost,0),r′′′(t)=(acost,asint,0).

从而,

∣ r ′ ( t ) ∣ = a 2 + b 2 , |\mathbf{r}'(t)|=\sqrt{a^2+b^2}, r(t)=a2+b2 ,

r ′ ( t ) ∧ r ′ ′ ( t ) = ( − a b cos ⁡ t , a b sin ⁡ t , − a 2 ) \mathbf{r}^{\prime}(t)\wedge\mathbf{r}^{\prime\prime}(t)=(-ab\cos t,ab\sin t,-a^{2}) r(t)r′′(t)=(abcost,absint,a2)
∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ = a a 2 + b 2 , |\mathbf{r}'(t)\wedge\mathbf{r}''(t)|=a\sqrt{a^2+b^2}, r(t)r′′(t)=aa2+b2 ,
( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) = ⟨ r ′ ( t ) ∧ r ′ ′ ( t ) , r ′ ′ ′ ′ ( t ) ⟩ = − a 2 b . (\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))=\langle\mathbf{r}'(t)\wedge\mathbf{r}''(t),\mathbf{r}''''(t)\rangle=-a^2b. (r(t),r′′(t),r′′′(t))=r(t)r′′(t),r′′′′(t)⟩=a2b.

故曲率

κ ( t ) = ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 = a a 2 + b 2 ( a 2 + b 2 ) 3 2 = a a 2 + b 2 , \kappa(t)=\frac{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}=\frac{a\sqrt{a^2+b^2}}{(a^2+b^2)^{\frac32}}=\frac{a}{a^2+b^2}, κ(t)=r(t)3r(t)r′′(t)=(a2+b2)23aa2+b2 =a2+b2a,

挠率

τ ( t ) = ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ 2 = − a 2 b a 2 ( a 2 + b 2 ) = − b a 2 + b 2 . \tau(t)=\frac{(\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))}{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|^2}=\frac{-a^2b}{a^2(a^2+b^2)}=-\frac b{a^2+b^2}. τ(t)=r(t)r′′(t)2(r(t),r′′(t),r′′′(t))=a2(a2+b2)a2b=a2+b2b.



T5

求 下 列 曲 线 的 曲 率 和 挠 率 :

( 1 ) r ( t ) = ( a cosh ⁡ t , a sinh ⁡ t , b t ) ( a > 0 ) ; ( 1) \textbf{ r}( t) = ( a\cosh t, a\sinh t, bt) ( a> 0) ; (1) r(t)=(acosht,asinht,bt)(a>0);
( 2 ) r ( t ) = ( 3 t − t 2 , 3 t 2 , 3 t + t 2 ) ; ( 2) \textbf{ r}( t) = ( 3t- t^2, 3t^2, 3t+ t^2) ; (2) r(t)=(3tt2,3t2,3t+t2);
( 3 ) r ( t ) = ( a ( 1 − sin ⁡ t ) , a ( 1 − cos ⁡ t ) , b t ) ( a > 0 ) ; ( 3) \textbf{ r}( t) = ( a( 1- \sin t) , a( 1- \cos t) , bt) ( a> 0) ; (3) r(t)=(a(1sint),a(1cost),bt)(a>0);
( 4 ) r ( t ) = ( a t , 2 a log ⁡ t , a t ) ( a > 0 ) . ( 4) \textbf{ r}( t) = ( at, \sqrt {2}a\log t, \frac at) ( a> 0) . (4) r(t)=(at,2 alogt,ta)(a>0).

(4)注意到 t ∈ ( 0 , + ∞ ) . t\in(0,+\infty). t(0,+). 直接计算,得

r ′ ( t ) = ( a , 2 a t , − a t 2 ) , \mathbf{r}'(t)=(a,\frac{\sqrt{2}a}t,-\frac a{t^2}), r(t)=(a,t2 a,t2a),

r ′ ′ ( t ) = ( 0 , − 2 a t 2 , 2 a t 3 ) , \mathbf{r}^{\prime\prime}(t)=(0,-\frac{\sqrt{2}a}{t^2},\frac{2a} {t^3}), r′′(t)=(0,t22 a,t32a),

r ′ ′ ′ ( t ) = ( 0 , 2 2 a t 3 , − 6 a t 4 ) . \mathbf{r}^{\prime\prime\prime}(t)=(0,\frac{2\sqrt{2}a}{t^3},-\frac{6a}{t^4}). r′′′(t)=(0,t322 a,t46a).

从而,

∣ r ′ ( t ) ∣ = a ( t 2 + 1 ) t 2 , |\mathbf{r}'(t)|=\frac{a(t^2+1)}{t^2}, r(t)=t2a(t2+1),

r ′ ( t ) ∧ r ′ ′ ( t ) = ( 2 a 2 t 4 , − 2 a 2 t 3 , − 2 a 2 t 2 ) , \mathbf{r}^{\prime}(t)\wedge\mathbf{r}^{\prime\prime}(t)=(\frac{\sqrt2a^2}{t^4},-\frac{2a^2}{t^3},-\frac{\sqrt2a^2}{t^2}), r(t)r′′(t)=(t42 a2,t32a2,t22 a2),

∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ = 2 a 2 ( t 2 + 1 ) t 4 , |\mathbf{r}'(t)\wedge\mathbf{r}''(t)|=\frac{\sqrt{2}a^2(t^2+1)}{t^4}, r(t)r′′(t)=t42 a2(t2+1),

( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) = ⟨ r ′ ( t ) ∧ r ′ ′ ( t ) , r ′ ′ ′ ′ ( t ) ⟩ = 2 2 a 3 t 6 . (\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))=\langle\mathbf{r}'(t)\wedge\mathbf{r}''(t),\mathbf{r}''''(t)\rangle=\frac{2\sqrt{2}a^3}{t^6}. (r(t),r′′(t),r′′′(t))=r(t)r′′(t),r′′′′(t)⟩=t622 a3.

故曲率

κ ( t ) = ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ ∣ r ′ ( t ) ∣ 3 = 2 t 2 a ( t 2 + 1 ) 2 , \kappa(t)=\frac{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}=\frac{\sqrt{2}t^2}{a(t^2+1)^2}, κ(t)=r(t)3r(t)r′′(t)=a(t2+1)22 t2,

挠率

τ ( t ) = ( r ′ ( t ) , r ′ ′ ( t ) , r ′ ′ ′ ( t ) ) ∣ r ′ ( t ) ∧ r ′ ′ ( t ) ∣ 2 = 2 t 2 a ( t 2 + 1 ) 2 . \tau(t)=\frac{(\mathbf{r}'(t),\mathbf{r}''(t),\mathbf{r}'''(t))}{|\mathbf{r}'(t)\wedge\mathbf{r}''(t)|^2}=\frac{\sqrt{2}t^2}{a(t^2+1)^2}. τ(t)=r(t)r′′(t)2(r(t),r′′(t),r′′′(t))=a(t2+1)22 t2.

T6

证明:曲线

r ( s ) = ( ( 1 + s ) 3 2 3 , ( 1 − s ) 3 2 3 , s 2 ) ( − 1 < s < 1 ) \mathbf{r}(s)=(\frac{(1+s)^\frac{3}{2}}{3},\frac{(1-s)^\frac{3}{2}}{3},\frac{s}{\sqrt{2}})\:(-1<s<1) r(s)=(3(1+s)23,3(1s)23,2 s)(1<s<1)
s s s为弧长参数,并求它的曲率、挠率和 Frenet 标架。

证明:由于

r ′ ( s ) = ( ( 1 + s ) 1 s 2 , − ( 1 − s ) 1 s 2 , 1 2 ) ( − 1 < s < 1 ) , \mathbf{r}'(s)=(\frac{(1+s)^{\frac1s}}2,-\frac{(1-s)^{\frac1s}}2,\frac1{\sqrt2})\:(-1<s<1), r(s)=(2(1+s)s1,2(1s)s1,2 1)(1<s<1),
∣ r ′ ( s ) ∣ = 1 + s 4 + 1 − s 4 + 1 2 = 1. |\mathbf{r}^{\prime}(s)|=\sqrt{\frac{1+s}4+\frac{1-s}4+\frac12}=1. r(s)=41+s+41s+21 =1.

s s s是弧长参数.从而,
t ( s ) = r ′ ( s ) , \mathbf{t}(s)=\mathbf{r}'(s), t(s)=r(s),
t ˙ ( s ) = ( ( 1 + s ) − 1 2 4 , − ( 1 − s ) − 1 2 4 , 0 ) . \dot{\mathbf{t}}(s)=(\frac{(1+s)^{-\frac12}}4,-\frac{(1-s)^{-\frac12}}4,0). t˙(s)=(4(1+s)21,4(1s)21,0).
故曲率
κ ( s ) = ∣ t ˙ ( s ) ∣ = 1 8 ( 1 − s 2 ) = 2 ( 1 − s 2 ) − 1 2 4 . \kappa(s)=|\dot{\mathbf{t}}(s)|=\sqrt\frac1{8(1-s^2)}=\frac{\sqrt{2}(1-s^2)^{-\frac12}}4. κ(s)=t˙(s)=8(1s2)1 =42 (1s2)21.
从而
n ( s ) = 1 κ t ˙ ( s ) = ( 2 ( 1 − s ) 1 2 2 , 2 ( 1 + s ) 1 2 2 , 0 ) , \mathbf{n}(s)=\frac1\kappa\dot{\mathbf{t}}(s)=(\frac{\sqrt2(1-s)^{\frac12}}2,\frac{\sqrt2(1+s)^{\frac12}}2,0), n(s)=κ1t˙(s)=(22 (1s)21,22 (1+s)21,0),
n ˙ ( s ) = ( − 2 ( 1 − s ) − 1 2 4 , 2 ( 1 + s ) − 1 2 4 , 0 ) , \dot{\mathbf{n}}(s)=(-\frac{\sqrt{2}(1-s)^{-\frac{1}{2}}}4,\frac{\sqrt{2}(1+s)^{-\frac{1}{2}}}4,0), n˙(s)=(42 (1s)21,42 (1+s)21,0),
b ( s ) = t ( s ) ∧ n ( s ) = ( − ( 1 + s ) 1 2 2 , ( 1 − s ) 1 2 2 , 2 2 ) . \mathbf{b}(s)=\mathbf{t}(s)\wedge\mathbf{n}(s)=(-\frac{(1+s)^{\frac12}}2,\frac{(1-s)^{\frac12}}2,\frac{\sqrt{2}}2). b(s)=t(s)n(s)=(2(1+s)21,2(1s)21,22 ).
挠率
τ ( s ) = ⟨ n ˙ ( s ) , b ( s ) ⟩ ( = − ⟨ b ˙ ( s ) , n ( s ) ⟩ ) = 2 ( 1 − s 2 ) − 1 2 4 . \tau(s)=\langle\dot{\mathbf{n}}(s),\mathbf{b}(s)\rangle(=-\langle\dot{\mathbf{b}}(s),\mathbf{n}(s)\rangle)=\frac{\sqrt{2}(1-s^2)^{-\frac12}}4. τ(s)=n˙(s),b(s)⟩(=b˙(s),n(s)⟩)=42 (1s2)21.
最后,曲线 r ( s ) \mathbf{r}(s) r(s)的 Frenet 标架为 { r ( s ) ; t ( s ) , n ( s ) , b ( s ) } \{\mathbf{r}(s);\mathbf{t}(s),\mathbf{n}(s),\mathbf{b}(s)\} {r(s);t(s),n(s),b(s)},其中 t , n , b \mathbf{t},\mathbf{n},\mathbf{b} t,n,b如上


http://www.mrgr.cn/news/51967.html

相关文章:

  • Javascript 构造http请求
  • 2010年国赛高教杯数学建模D题对学生宿舍设计方案的评价解题全过程文档及程序
  • 如何配置 Jenkins 主从架构以及结合 Gerrit 和镜像操作
  • 火语言RPA流程组件介绍--检测元素是否存在
  • 使用quartz定时任务实现支付单自动关单功能,并引入多线程+分段解决扫表延迟的问题
  • C++多款质量游戏及开发建议[OIER建议]
  • Anthropic分享RAG最佳实践:Contextual Retrieval
  • 图书库存控制:Spring Boot进销存系统的应用
  • 如何测试网络带宽
  • react18中如何监听localstorage的变化获取最新的本地缓存
  • 合并与变形
  • 高德开放平台——实时路径规划优化指南
  • Google Ads API v18 发布,开发者迎来全新功能与优化
  • Python机器学习
  • 84. 拉伸ExtrudeGeometry
  • 【论文阅读】Detach and unite: A simple meta-transfer for few-shot learning
  • 产品更新|DuoPlus云手机APP预装、批量管理功能新上线!
  • [python]python中sort的key参数使用
  • Sap_FI_凭证类型
  • JavaWeb合集-SpringBoot项目配套知识