当前位置: 首页 > news >正文

sklearn pipeline

示例代码

from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import scipy.linalg
from sklearn.preprocessing import LabelEncoder, StandardScaler
import optuna
import scipy.linalg
from sklearn.linear_model import BayesianRidge
import pandas as pd
from sklearn.model_selection import LeaveOneOut, cross_val_scoreclass EmscScaler(object):def __init__(self, order=1):self.order = orderself._mx = Nonedef mlr(self, x, y):"""Multiple linear regression fit of the columns of matrix x(dependent variables) to constituent vector y (independent variables)order -     order of a smoothing polynomial, which can be includedin the set of independent variables. If order isnot specified, no background will be included.b -         fit coeffsf -         fit result (m x 1 column vector)r -         residual   (m x 1 column vector)"""if self.order > 0:s = np.ones((len(y), 1))for j in range(self.order):s = np.concatenate((s, (np.arange(0, 1 + (1.0 / (len(y) - 1)), 1.0 / (len(y) - 1)) ** j).reshape(-1,1)[0:len(y)]),1)X = np.concatenate((x.reshape(-1,1), s), 1)else:X = x# calc fit b=fit coefficientsb = np.dot(np.dot(scipy.linalg.pinv(np.dot(X.T, X)), X.T), y)f = np.dot(X, b)r = y - freturn b, f, rdef fit(self, X, y=None):"""fit to X (get average spectrum), y is a passthrough for pipeline compatibility"""self._mx = np.mean(X, axis=0)def transform(self, X, y=None, copy=None):if type(self._mx) == type(None):print("EMSC not fit yet. run .fit method on reference spectra")else:# do fittingcorr = np.zeros(X.shape)for i in range(len(X)):b, f, r = self.mlr(self._mx, X[i, :])corr[i, :] = np.reshape((r / b[0]) + self._mx, (corr.shape[1],))return corrdef fit_transform(self, X, y=None):self.fit(X)return self.transform(X)from sklearn.base import BaseEstimator, TransformerMixin
class SpectraPreprocessor(BaseEstimator, TransformerMixin):def __init__(self, emsc_order=3,X_ref=None):self.emsc_order = emsc_orderself.emsc_scalers = [EmscScaler(order=emsc_order) for _ in range(4)]self.X_ref = X_refdef fit(self, X, y=None):X_ref = self.X_refif X_ref is None:X_ref = X.copy()# Define the column ranges for each segmentranges = [(0, 251), (281, 482), (482, 683), (683, 854)]# Fit EmscScaler for each segmentfor i, (start, end) in enumerate(ranges):self.emsc_scalers[i].fit(X_ref[:, start:end])return selfdef transform(self, X, y=None):# Define the column ranges for each segmentranges = [(0, 251), (281, 482), (482, 683), (683, 854)]# Transform each segmenttransformed_segments = []for i, (start, end) in enumerate(ranges):segment = X[:, start:end]transformed_segment = self.emsc_scalers[i].transform(segment)transformed_segments.append(transformed_segment)# Concatenate all transformed segmentsreturn np.concatenate(transformed_segments, axis=1)def fit_transform(self, X, y=None):self.fit(X)return self.transform(X)def bayesian_ridge_optuna_for_emsc_data(x_train, y_train, pipeline_):def objective(trial):try:alpha_1 = trial.suggest_float('alpha_1', 0.001, 1, log=True)alpha_2 = trial.suggest_float('alpha_2', 0.001, 1, log=True)lambda_1 = trial.suggest_float('lambda_1', 0.001, 1, log=True)lambda_2 = trial.suggest_float('lambda_2', 0.001, 1, log=True)model = pipeline_.set_params(bayesian_ridge__alpha_1=alpha_1,bayesian_ridge__alpha_2=alpha_2,bayesian_ridge__lambda_1=lambda_1,bayesian_ridge__lambda_2=lambda_2)model.fit(x_train, y_train)score = cross_val_score(model, x_train, y_train, cv=10, n_jobs=-1, scoring='r2')return np.mean(score)except ValueError as e:return -np.infoptuna.logging.set_verbosity(optuna.logging.WARNING)pruner = optuna.pruners.MedianPruner()study = optuna.create_study(direction="maximize", pruner=pruner)study.optimize(objective, n_trials=500, show_progress_bar=True, n_jobs=1)return study.best_paramsdef getdata(filenamex, filenamey):x = pd.read_csv(filenamex, header=None)y = pd.read_csv(filenamey)data = pd.concat([x, y], axis=1)return dataname = 'test'
x, y = np.random.rand(100,884), np.random.rand(100)
x_ref =  np.random.rand(30,884)
pipeline = Pipeline([('preprocessor', SpectraPreprocessor(emsc_order=3, X_ref=None)),('scaler', StandardScaler()),('bayesian_ridge', BayesianRidge())
])pipeline.set_params(preprocessor__X_ref=x_ref)############################################################################################################################################################
best_params = bayesian_ridge_optuna_for_emsc_data(x, y, pipeline)
############################################################################################################################################################pipeline.set_params(bayesian_ridge__alpha_1=best_params['alpha_1'],bayesian_ridge__alpha_2=best_params['alpha_2'],bayesian_ridge__lambda_1=best_params['lambda_1'],bayesian_ridge__lambda_2=best_params['lambda_2']
)
pipeline.fit(x, y)
y_pred = pipeline.predict(x)
print(y_pred)

http://www.mrgr.cn/news/48764.html

相关文章:

  • 中科星图GVE(案例)——AI实现建筑用地变化前后对比情况
  • node.js服务器基础
  • C++笔记---红黑树的插入删除
  • 数据结构-5.2.树的性质
  • 【C语言教程】【常用类库】(四)数学函数库 - <math.h>
  • 浅谈钓鱼攻防之道-制作免杀word文件钓鱼
  • 幽默视频下载网站推荐
  • C#拓展方法
  • 一文搞懂什么是 classpath
  • 备受好评的 5 款安卓手机数据恢复工具推荐
  • vim实用笔记
  • Windows 下 cocos2d-x-3.17.2 VS2017开发环境搭建
  • 机器学习与神经网络:从技术前沿到诺贝尔奖的跨越与未来展望
  • Python酷库之旅-第三方库Pandas(145)
  • 【Adobe全家桶】 Adobe 全家桶 AE AU PR ME WIN MAC 各个版本
  • 安卓无障碍获取录屏权限
  • C语言中缓冲区底层实现以及数据输入的处理
  • Linux内核USB3.0驱动框架分析--USB主机控制器hcd驱动分析
  • 【经管】上市公司供应链金融数据(1990-2023年)
  • React