当前位置: 首页 > news >正文

动态规划lc

先找到规律,然后找边界情况;部分特殊情况分类讨论  *递归

70.爬楼梯

简单

提示

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

方法一:动态规划
思路和算法

我们用 f(x) 表示爬到第 x 级台阶的方案数,考虑最后一步可能跨了一级台阶,也可能跨了两级台阶,所以我们可以列出如下式子:

f(x)=f(x−1)+f(x−2)

它意味着爬到第 x 级台阶的方案数是爬到第 x−1 级台阶的方案数和爬到第 x−2 级台阶的方案数的和。很好理解,因为每次只能爬 1 级或 2 级,所以 f(x) 只能从 f(x−1) 和 f(x−2) 转移过来,而这里要统计方案总数,我们就需要对这两项的贡献求和。

以上是动态规划的转移方程,下面我们来讨论边界条件。我们是从第 0 级开始爬的,所以从第 0 级爬到第 0 级我们可以看作只有一种方案,即 f(0)=1;从第 0 级到第 1 级也只有一种方案,即爬一级,f(1)=1。这两个作为边界条件就可以继续向后推导出第 n 级的正确结果。我们不妨写几项来验证一下,根据转移方程得到 f(2)=2,f(3)=3,f(4)=5,……,我们把这些情况都枚举出来,发现计算的结果是正确的。

我们不难通过转移方程和边界条件给出一个时间复杂度和空间复杂度都是 O(n) 的实现,但是由于这里的 f(x) 只和 f(x−1) 与 f(x−2) 有关,所以我们可以用「滚动数组思想」把空间复杂度优化成 O(1)。下面的代码中给出的就是这种实现。

509. 斐波那契数

尝试过

简单

相关标签

相关企业

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

这个就是只有第三个才开始变成斐波那契,所以应该分类讨论

class Solution {public int fib(int n) {if(n<2){return n;}int p=0;int q=0;int r=1;for (int i=2;i<=n;i++){p=q;q=r;r=p+q;}return r;}
}

1137. 第 N 个泰波那契数

泰波那契序列 Tn 定义如下: 

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
class Solution {public int tribonacci(int n) {if (n==0){return 0;}if (n<=2){return 1;}int i=0,j=0,k=1,r=1;//每次设定的时候,保留一次for循环里的滚动一次,即多一位0(其实i是任意数字都没关系)for (int m=3;m<=n;m++){//记得从第几个tri开始i=j;j=k;k=r;r=i+j+k;}return r;}
}


http://www.mrgr.cn/news/48566.html

相关文章:

  • 利用FnOS搭建虚拟云桌面,并搭建前端开发环境(一)
  • 多元化外链策略如何最大化SEO效果?
  • SpringBoot框架下购物推荐网站的设计模式与实现
  • 部署私有仓库以及docker web ui应用
  • (JAVA)B树和B+树的实现原理阐述
  • 基于Python+sqlite3实现(Web)图书管理系统
  • C++中的常量-编译期常量与运行期常量
  • JavaScript第6章:对象与键值对
  • AI开源项目
  • 2024开放原子开源生态大会 | 麒麟信安携手openEuler共建开源生态,共塑产业未来
  • 如何清理无用文件和空文件夹?详细教程来了
  • 苹果手机怎么清理照片:释放存储空间的小秘诀
  • 一键安装与配置Stable Diffusion,轻松实现AI绘画
  • 光控资本:资产拉升!“毫无实质内容”,引特斯拉股价大跌
  • manim学习记录-参考文档整理
  • 提升邮件营销设计精准度秘诀,效率与效果实践
  • 吴恩达:恭喜AI获得诺贝尔奖
  • 熵权TOPSIS公式、数据和代码(案例分析)
  • 邀请函 | 麒麟信安与您相约第3届电力行业数字化转型大会暨第5届电力人工智能大会
  • table标签实现甘特图效果