当前位置: 首页 > news >正文

大语言模型中文本分割策略的综合指南

整理

本文整理了一些简单的文本切分方式,适用于大语言模型经典应用RAG或相似场景。

一般切分

如果不借助任何包,很容易想到如下切分方案:

text = "我是一个名为 ChatGLM3-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的目标是通过回答用户提出的问题来帮助他们解决问题。由于我是一个计算机程序,所以我没有实际的存在,只能通过互联网来与用户交流。"
chunks = []
chunk_size = 128 for i in range(0, len(text), chunk_size):chunk = text[i:i + chunk_size]chunks.append(chunk)
chunks
['我是一个名为 ChatGLM3-6B 的人工智能助手,是基于清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发的。我的目标是通过回答用户提出的问题来帮助他们解决问题。由于我是一个计算机程序,所以我没有实际的存在,只能通过互联网','来与用户交流。']

字符切分

使用CharacterTextSplitter,一般的设置参数为:chunk_size、 chunk_overlap、separator和strip_whitespace。

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size = 35, chunk_overlap=0, separator='', strip_whitespace=False)
text_splitter.create_documents([text])
[Document(page_content='我是一个名为 ChatGLM3-6B 的人工智能助手,是基于清华大学 '),Document(page_content='KEG 实验室和智谱 AI 公司于 2023 年共同训练的语言模型开发'),Document(page_content='的。我的目标是通过回答用户提出的问题来帮助他们解决问题。由于我是一个计'),Document(page_content='算机程序,所以我没有实际的存在,只能通过互联网来与用户交流。')]

递归字符切分

使用RecursiveCharacterTextSplitter,一般的设置参数为:chunk_size、 chunk_overlap。

from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 35, chunk_overlap=0)
text_splitter.create_documents([text])
[Document(page_content='我是一个名为 ChatGLM3-6B 的人工智能助手,是基于清华大学'),Document(page_content='KEG 实验室和智谱 AI 公司于 2023'),Document(page_content='年共同训练的语言模型开发的。我的目标是通过回答用户提出的问题来帮助他'),Document(page_content='们解决问题。由于我是一个计算机程序,所以我没有实际的存在,只能通过互联'),Document(page_content='网来与用户交流。')]

与CharacterTextSplitter不同,RecursiveCharacterTextSplitter不需要设置分隔符,默认的几个分隔符如下:

"\n\n" - 两个换行符,一般认为是段落分隔符
"\n" - 换行符
" " - 空格
"" - 字符

拆分器首先查找两个换行符(段落分隔符)。一旦段落被分割,它就会查看块的大小,如果块太大,那么它会被下一个分隔符分割。如果块仍然太大,那么它将移动到下一个块上,以此类推。

Mrrkdown切分

除了对普通的文本字符进行切分外,langchain还支持对md、html、py、js等各种特殊文本或代码进行切分。

# 以下是一段md文本
markdown_text = """
**LangChain-Chatchat** 
基于ChatGLM等大语言模型与Langchain等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。## 目录
* 介绍
* 解决的痛点
* 快速上手
* 1. 环境配置
* 2. 模型下载
* 3. 初始化知识库和配置文件
* 4. 一键启动
* 5. 启动界面示例
* 联系我们## 介绍
一种利用langchain思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。
一行命令运行 Docker :
​```shell
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7
from langchain.text_splitter import MarkdownTextSplitter
splitter = MarkdownTextSplitter(chunk_size = 40, chunk_overlap=0)
splitter.create_documents([markdown_text])
[Document(page_content='**LangChain-Chatchat**'),Document(page_content='基于ChatGLM等大语言模型与Langchain等应用框架实现,开源、可离线'),Document(page_content='部署的检索增强生成(RAG)大模型知识库项目。'),Document(page_content='## 目录\n* 介绍\n* 解决的痛点\n* 快速上手\n* 1. 环境配置'),Document(page_content='* 2. 模型下载\n* 3. 初始化知识库和配置文件\n* 4. 一键启动'),Document(page_content='* 5. 启动界面示例\n* 联系我们'),Document(page_content='## 介绍'),Document(page_content='一种利用langchain思想实现的基于本地知识库的问答应用,目标期望建立一套'),Document(page_content='对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。'),Document(page_content='一行命令运行 Docker :\n```shell'),Document(page_content='docker run -d --gpus all -p 80:8501'),Document(page_content='registry.cn-beijing.aliyuncs.com/chatch'),Document(page_content='at/chatchat:0.2.7'),Document(page_content='```')]

Python代码切分

python_text = """
class Person:def __init__(self, name, age):self.name = nameself.age = agep1 = Person("John", 36)for i in range(10):print (i)
"""from langchain.text_splitter import PythonCodeTextSplitter
python_splitter = PythonCodeTextSplitter(chunk_size=100, chunk_overlap=0)
python_splitter.create_documents([python_text])
[Document(page_content='class Person:\n  def __init__(self, name, age):\n    self.name = name\n    self.age = age'),Document(page_content='p1 = Person("John", 36)\n\nfor i in range(10):\n    print (i)')]

TODO

以上方法仅按照固定长度和分割符对文本进行切分,但这在很多情况下会导致损失语义。更高级的切分方式有:语义相似度切分和利用大模型Agent切分,后续再补充。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述


http://www.mrgr.cn/news/43758.html

相关文章:

  • Day02-MySQL数据库服务体系结构
  • Java 注释新手教程一口气讲完!ヾ(≧▽≦*)o
  • 校企合作必备无人机兴趣班技术详解
  • P10185 [YDOI R1] Necklace
  • Qt开发技巧(十四)文字的分散对齐,设置动态库路径,进度条控件的文本,文件对话框的卡顿,滑块控件的进度颜色,停靠窗体的排列,拖拽事件的坑
  • 2025秋招LLM大模型多模态面试题(九)-- LoRA 面试问题大全:从理论到实践
  • Chromium 搜索引擎功能浅析c++
  • 重生之我们在ES顶端相遇第 20 章 - Mapping 参数设置大全(进阶)
  • 【表达式的值II】
  • 终于有人把多模态大模型讲这么详细了
  • [Python] 轻松入门输出语句与条件语句
  • ElasticSearch 备考 -- Snapshot Restore
  • 《浔川社团官方通报 —— 为何明确 10 月 2 日上线的浔川 AI 翻译 v3.0 再次被告知延迟上线》
  • 教育技术革新:SpringBoot在线教育系统开发
  • 【数学分析笔记】第4章第4节 复合函数求导法则及其应用(3)
  • ffmpeg面向对象——拉流协议匹配机制探索
  • CSS盒子模型
  • 自动驾驶系列—线控系统:驱动自动驾驶的核心技术解读与应用指南
  • 独孤思维:闲得蛋疼才去做副业
  • C++面试速通宝典——10