当前位置: 首页 > news >正文

【图论】树剖(上):重链剖分

一、前置知识清单

  1. 深度优先搜索DFS 点我复习
  2. 图的存储 复习链接敬请期待
  3. 树状数组 点我复习

二、树剖简介

树剖(树链剖分),是一种把树划分成链的算法,该算法分为重链剖分和长链剖分。
本文仅讨论重链剖分,长链剖分目前本人还不会,所以不予展示。

三、模拟重链剖分

图6是一棵树,我们钦定1号结点为根。
图6
图6

若要对这棵树进行重链剖分,首先要求出它的DFN序。注意这里的DFN序与DFS序还是有一定区别的。 DFN序就是优先遍历每个结点重儿子的DFS序。
以上面的图6为例,我们先求出以每个结点为根的子树重量 s i z i siz_i sizi(即以每个结点为根的子树所包含的结点个数)。该树中 s i z i siz_i sizi 分别等于 5 5 5 2 2 2 1 1 1 4 4 4 1 1 1
对于每个非叶子结点,找到其 s i z i siz_i sizi 最大的儿子(即重儿子),记为 s o n i son_i soni。若有多个儿子的 s i z i siz_i sizi 相等,则 s o n i son_i soni 取任意一个儿子均可。该树中 s o n i son_i soni 分别等于 4 4 4 3 3 3 0 0 0 2 2 2 0 0 0
我们将每个重儿子和它的父亲连接,形成一条条重链。该树中有两条重链: 1 1 1 4 4 4 2 2 2 3 3 3 为一条重链, 5 5 5 自成一条重链。

四、代码实现重链剖分

感谢@xixisuper_提供树剖代码。由于本人一顿操作,代码变得又长又唐,请见谅。

#include<bits/stdc++.h>
using namespace std;
vector<int>e[114514];
int fa[114514],dep[114514],siz[114514],son[114514];
//fa[i]存储每个非根节点的父亲,dep[i]存储每个结点的深度 
void dfs(int u,int father){int lz;fa[u]=father;dep[u]=dep[father]+1;siz[u]=1;lz=e[u].size();for(int i=0;i<lz;i++){if(e[u][i]==father)continue;//避免回搜 dfs(e[u][i],u);//本人的十手笔记本电脑写了auto会编译错误 siz[u]+=siz[e[u][i]];if(siz[son[u]]<siz[e[u][i]]) son[u]=e[u][i];}
}//找重儿子 
int dfn[114514],nidfn[114514],top[114514],tot;
//dfn[i]存储DFN序(点到下标),nidfn[i]存储逆DFN序(下标到点),你只需要知道这两个东西很有用就行了 
//top[i]存储链顶 
void pf(int u,int father){int lz; dfn[u]=++tot; nidfn[tot]=u;if(son[u]){top[son[u]]=top[u];pf(son[u],u);//先遍历重儿子 }lz=e[u].size();for(int i=0;i<lz;i++){if(e[u][i]==father)continue;//避免回搜 if(e[u][i]==son[u])continue;//重儿子已经遍历过了 top[e[u][i]]=e[u][i];pf(e[u][i],u);}
}//剖分,求DFN序 
int lowbit(int x){return x&(-x);
}
struct st{//使用树状数组维护区间和 int c[114514];void add(int x,int y){for(int i=x;i<=y;i+=lowbit(i))c[i]+=y;//单点修改 return;}void add(int x,int y,int z){for(int i=x;i<=y;i++)add(i,z);//这里的区间修改貌似有点怪怪的,有什么可以优化的地方请私信我,备注142719158return; }int query(int x){int r=0;//前缀查询for(int i=x;i;i-=lowbit(i))r+=c[i];return r;}int query(int x,int y){return query(y)-query(x-1);//区间查询 }
}tr;
void update(int x,int y,int z){//将x与y之间唯一路径上的点点权加上zwhile(top[x]!=top[y]){if(dep[top[x]]>dep[top[y]]){tr.add(dfn[top[x]],dfn[x],z);//当两个结点不在同一条链上时,深度更大的结点向上跳 x=fa[top[x]];//向上跳到链顶的父亲 }else{tr.add(dfn[top[y]],dfn[y],z);y=fa[top[y]];//向上跳到链顶的父亲 }}if(dep[x]>dep[y])tr.add(dfn[y],dfn[x],z);else tr.add(dfn[x],dfn[y],z);return; 
}
int qry(int x,int y){//查询x与y之间唯一路径上的点点权之和 int r=0; while(top[x]!=top[y]){if(dep[top[x]]>dep[top[y]]){r+=tr.query(dfn[top[x]],dfn[x]);//当两个结点不在同一条链上时,深度更大的结点向上跳 x=fa[top[x]];//向上跳到链顶的父亲 }else{r+=tr.query(dfn[top[y]],dfn[y]);y=fa[top[y]];//向上跳到链顶的父亲 }}if(dep[x]>dep[y])r+=tr.query(dfn[y],dfn[x]);else r+=tr.query(dfn[x],dfn[y]);return r;
}
int main(){dfs(1,0);top[1]=1;pf(1,0);return 0;
}

如果博客有错误,或者发现了代码中的问题,请联系我,备注142719158,我会尽快修正!鲁A济南车!


http://www.mrgr.cn/news/43435.html

相关文章:

  • ChatGPT Canvas:交互式对话编辑器
  • Matlab编程示例24:freexyn在b站的读取手写体mnist数据集的matlab代码
  • [NeurIPS 2022] STaR: Bootstrapping Reasoning With Reasoning
  • 计算机视觉算法知识详解(含代码示例)
  • Koa2项目实战1(项目搭建)
  • 【Mybatis篇】Mybatis的关联映射详细代码带练 (多对多查询、Mybatis缓存机制)
  • C语言自定义类型联合和枚举(25)
  • Vue之父尤雨溪成立VoidZero公告,已获得 460 万美元种子轮融资
  • 【hot100-java】【将有序数组转换为二叉搜索树】
  • 事业群 BG、业务单元 BU 极简理解
  • 【C++ STL】手撕vector,深入理解vector的底层
  • AES加密算法的详细描述和C语言实现
  • 职场中的10个“人情世故”,随处可见
  • JavaWeb的小结02
  • JavaScript作用域详解
  • C语言导航 2.2数据类型
  • 【WeChat】Ubuntu20.04 安装非官方版微信
  • Art. 1 | 信号、信息与消息的区别及其在通信中的应用
  • k8s的简介和部署
  • 旅游心动盲盒:开启个性化旅行新体验