当前位置: 首页 > news >正文

pip 和 conda 的安装区别

在决定使用 pip 和 conda 安装包时,了解这两个包管理器之间的主要区别非常重要。以下是细分:

1. 区别

1.1. Package Management System

  1. 包裹管理系统

Pip: :
Primarily used for Python packages.
主要用于 Python 包。
Installs packages from the Python Package Index (PyPI).
从 Python 包索引 (PyPI) 安装包。
Handles Python packages only; you may need to manage dependencies manually.
仅处理 Python 包;您可能需要手动管理依赖项。

Conda:
A general package manager that can manage packages written in any language (Python, R, Ruby, etc.).
一个通用的包管理器,可以管理以任何语言(Python、R、Ruby 等)编写的包。
Installs packages from the Anaconda repository or other configured channels.
从 Anaconda 存储库或其他配置的通道安装包。
Automatically manages dependencies and environments.
自动管理依赖项和环境。

1.2. Environment Management

Pip: 点:
Requires virtual environments (e.g., using venv or virtualenv) for managing project environments.
需要虚拟环境(例如,使用 venv 或 virtualenv)来管理项目环境。
Doesn’t natively support environment management.
本身不支持环境管理。
Conda:
Built-in environment management feature.
内置环境管理功能。
Allows you to create, export, and manage multiple isolated environments easily.
允许您轻松创建、导出和管理多个隔离环境。

1. 3. Dependency Resolution

  1. 依赖项解析
    Pip: 点:
    Performs dependency resolution during installation but may not handle complex dependencies well.
    在安装过程中执行依赖项解析,但可能无法很好地处理复杂的依赖项。
    Can lead to “dependency hell” if conflicts arise.
    如果出现冲突,可能会导致 “依赖地狱”。
    Conda: 康达:
    Uses a more sophisticated dependency resolver.
    使用更复杂的依赖关系解析程序。
    Ensures that all dependencies are compatible before installation, reducing conflicts.
    安装前确保所有依赖项兼容,减少冲突。

1. 4. Installation Speed

  1. 安装速度
    Pip:
    Generally installs packages from source, which can take longer.
    通常从源安装包,这可能需要更长的时间。
    May require compilation for some packages.
    可能需要对某些软件包进行编译。
    Conda:
    Often installs precompiled binaries, leading to faster installation times.
    通常会安装预编译的二进制文件,从而加快安装时间。
    Ideal for data science packages that may have complex dependencies.
    非常适合可能具有复杂依赖项的数据科学包。

1.5. Use Cases 5.

使用案例
Pip: :
Best suited for standard Python projects where you need packages from PyPI.
最适合需要 PyPI 软件包的标准 Python 项目。
Common in web development and general Python programming.
常见于 Web 开发和通用 Python 编程。

Conda:
Preferred in data science, machine learning, and scientific computing where complex dependencies are common.
在数据科学、机器学习和科学计算中,复杂依赖关系很常见,这是首选。
Useful for users working with multiple languages and environments.
对于使用多种语言和环境的用户非常有用。

Conclusion 结论
Both pip and conda have their strengths. If you’re primarily working with Python and need access to a wide range of Python packages, pip is a good choice. However, if you’re dealing with complex dependencies or require a multi-language environment, conda is often the better option.
pip 和 conda 都有其优势。如果您主要使用 Python 并且需要访问各种 Python 包,pip 是一个不错的选择。但是,如果您正在处理复杂的依赖项或需要多语言环境,conda 通常是更好的选择。

2. 具体包查看

To view an installed package using the conda command, you can follow these steps:

1. Open Your Terminal or Command Prompt

Make sure you have conda installed and accessible in your terminal or command prompt.

2. Activate the Desired Environment (if necessary)

If you have multiple environments and the package is installed in a specific one, activate that environment first:

conda activate your_environment_name

3. List Installed Packages

To view all installed packages in the current environment, use:

conda list

pip 对应的命令是 pip list;
This command will display a list of all packages along with their versions.

4. View a Specific Package

If you want to check details about a specific package, you can filter the list or use the following command:

conda list package_name

pip 对应的命令是 pip show package_name;

Replace package_name with the name of the package you want to view.

5. Get More Information About a Package

To get more detailed information about a specific package, including its dependencies, use:

conda info package_name

This will provide additional details about the package, such as its version, build, and dependencies.

Example

conda activate myenv
conda list numpy
conda info numpy

This will show you the installed version of NumPy in the myenv environment and provide detailed info about it.


http://www.mrgr.cn/news/43126.html

相关文章:

  • Nginx深度解析与实战应用
  • 短剧小剧场类小程序如何运营呢?集师saas平台搭建专属短剧类小程序平台短剧视频播放类平台源码
  • 零样本VS小样本
  • 回溯算法--python
  • Leetcode—148. 排序链表【中等】
  • Nuxt.js 应用中的 app:mounted 钩子详解
  • C++函数指针类型
  • webGL进阶(一)多重纹理效果
  • 搭建shopify本地开发环境
  • Day01-MySQL数据库介绍及部署
  • 顺序表的使用
  • Kafka与RabbitMQ:消息队列系统的两大巨头
  • 一“填”到底:深入理解Flood Fill算法
  • GitHub入门与实践
  • Linux学习笔记(七):磁盘的挂载与扩展
  • js中map属性
  • 博世IPB - 集成动力制动系统 - One Box集大成者 - 高度自动化驾驶的模块化扩展套件
  • for和while都是循环,他们有什么差异呢?我们在使用过程中如何做选择呢?
  • 带环链表找入环结点及结论证明
  • 【C++】C++对象初探及友元