当前位置: 首页 > news >正文

基于 Transformer 的中英文翻译项目

项目简介

本项目旨在使用 PyTorch 从零实现一个基于 Transformer 的中英文翻译模型。我们将手写实现 Transformer 的各个组件,包括多头注意力机制、前馈神经网络、编码器和解码器等,最终实现一个能够将英文句子翻译为中文的模型。项目的主要步骤包括:

  1. 数据预处理:从数据集中提取英文和中文句子,并进行初步清洗和保存。
  2. 数据加载与分词:将预处理后的数据加载进内存,进行分词处理,并构建词汇表。
  3. 模型构建:手写实现 Transformer 模型的各个组件,包括多头注意力、前馈神经网络、编码器、解码器等。
  4. 模型训练与验证:使用训练集对模型进行训练,并使用验证集评估模型性能。
  5. 测试与推理:使用训练好的模型进行实际的翻译测试。

Step 1: 数据预处理

目的

从原始数据集中提取英文和中文句子,并将其转换为模型能够使用的格式。

流程

  1. 读取文件:从给定的文本文件中读取每一行数据。
  2. 提取句子:每一行数据包含英文和中文句子,我们将其分割并提取出这两部分。
  3. 保存处理后的数据:将处理后的句子保存为两个单独的文件,一个保存英文句子,另一个保存中文句子。

代码

import pandas as pd# 加载数据文件并进行预处理
file_path = 'data/cmn.txt'  # 请确保数据文件位于该路径下# 读取文件并处理每一行,提取英文和中文句子
data = []
with open(file_path, 'r', encoding='utf-8') as file:for line in file:# 每行数据使用制表符分割,提取英文和中文部分parts = line.strip().split('\t')if len(parts) >= 2:english_sentence = parts[0].strip()chinese_sentence = parts[1].strip()data.append([english_sentence, chinese_sentence])# 创建 DataFrame 保存提取的句子
df = pd.DataFrame(data, columns=['English', 'Chinese'])# 将处理后的英文和中文句子分别保存为两个文件
df['English'].to_csv('data/english_sentences.txt', index=False, header=False)
df['Chinese'].to_csv('data/chinese_sentences.txt', index=False, header=False)# 显示前几行以验证处理是否正确
print(df.head())

输出示例

  English Chinese
0     Hi.      嗨。
1     Hi.     你好。
2    Run!    你跑吧!
3    Run!    你快跑!
4   Who?      是谁?

Step 2: 数据加载与分词

目的

将预处理后的数据加载进内存,对每个句子进行分词处理,并构建英文和中文的词汇表。

流程

  1. 定义分词器:英文使用基本的英文分词器,中文采用字符级分割。
  2. 构建词汇表:基于分词后的数据构建词汇表,并添加特殊标记,如 <unk><pad><bos><eos>
  3. 将句子转换为索引序列:将分词后的句子转换为词汇表中的索引序列,准备用于模型的输入。
  4. 创建数据集和数据加载器:将处理后的数据封装成可用于模型训练的数据集和数据加载器。

代码

import torch
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator# 定义英文和中文的分词器
tokenizer_en = get_tokenizer('basic_english')# 中文分词器:将每个汉字作为一个 token
def tokenizer_zh(text):return list(text)# 构建词汇表函数
def build_vocab(sentences, tokenizer):def yield_tokens(sentences):for sentence in sentences:yield tokenizer(sentence)vocab = build_vocab_from_iterator(yield_tokens(sentences), specials=['<unk>', '<pad>', '<bos>', '<eos>'])vocab.set_default_index(vocab['<unk>'])return vocab# 从文件中加载句子
with open('data/english_sentences.txt', 'r', encoding='utf-8') as f:english_sentences = [line.strip() for line in f]with open('data/chinese_sentences.txt', 'r', encoding='utf-8') as f:chinese_sentences = [line.strip() for line in f]# 构建词汇表
en_vocab = build_vocab(english_sentences, tokenizer_en)
zh_vocab = build_vocab(chinese_sentences, tokenizer_zh)print(f'英文词汇表大小:{len(en_vocab)}')
print(f'中文词汇表大小:{len(zh_vocab)}')# 将句子转换为索引序列,并添加 <bos> 和 <eos>
def process_sentence(sentence, tokenizer, vocab):tokens = tokenizer(sentence)tokens = ['<bos>'] + tokens + ['<eos>']indices = [vocab[token] for token in tokens]return indices# 处理所有句子
en_sequences = [process_sentence(sentence, tokenizer_en, en_vocab) for sentence in english_sentences]
zh_sequences = [process_sentence(sentence, tokenizer_zh, zh_vocab) for sentence in chinese_sentences]# 示例:查看处理后的索引序列
print("示例英文句子索引序列:", en_sequences[0])
print("示例中文句子索引序列:", zh_sequences[0])

创建数据集和数据加载器

from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequenceclass TranslationDataset(Dataset):def __init__(self, src_sequences, trg_sequences):self.src_sequences = src_sequencesself.trg_sequences = trg_sequencesdef __len__(self):return len(self.src_sequences)def __getitem__(self, idx):return torch.tensor(self.src_sequences[idx

http://www.mrgr.cn/news/40767.html

相关文章:

  • 48.哀家要长脑子了!
  • 代码随想录算法训练营第四六天| 647. 回文子串 516.最长回文子序列
  • 【Java 集合】List接口 —— ArrayList 与 LinkedList 详解
  • 机器学习模型评估
  • JavaScript 反射(Reflect)和代理(Proxy)简单介绍
  • [python][pipenv]pipenv的使用
  • 《野蛮时代》数据分析项目实战——报告
  • Spring Data(学习笔记)
  • linux常用命令汇编(持续更新)
  • 波动方程(将麦克斯韦方程组求出只有E或H的表达式)
  • DBeaver显示PostgreSQL数据库的信息模式
  • 代码随想录算法训练营第四八天| 739. 每日温度 496.下一个更大元素 I 503.下一个更大元素II
  • 自闭症寄宿学校 vs. 日常教育:为孩子提供更多可能
  • Linux 再入门整理:详解 /etc/fstab 文件
  • 【高等数学】映射极限的语言表述
  • Docker 安装 Citus 单节点集群:全面指南与详细操作
  • MySQL索引与事务
  • MongoDB 快速入门+单机部署(附带脚本)
  • Ubuntu如何如何安装tcpdump
  • 联想天逸100使用笔记