当前位置: 首页 > news >正文

【空中计算】Over-the-air Computing in OFDM Systems

Consider an over-the-air computing system consisting of a receiver,which acts as an fusion center, and K K K transmitting devices. We assume that we want to calculate a function f : R K → R f : \mathbb{R}^K \to \mathbb{R} f:RKR.
We introduce OFDM. Each device can utilize a set of subcarriers L = { 0 , ⋯ , L − 1 } \mathcal{L} = \{0,\cdots,L - 1\} L={0,,L1} to transmit data for aggregation per subcarrier L=64. The channel of each device is a finite impulse response (FIR) filter h k [ n ] , 0 ≤ n ≤ μ h_k[n], 0 \leq n \leq \mu hk[n],0nμ, where exist interference between μ \mu μ=4 symbols.

Each device has a set of L L L symbols to transmit X k = [ X k [ 0 ] , ⋯ , X k [ L − 1 ] ] \boldsymbol{X}_k = [X_k[0],\cdots,X_k[L - 1]] Xk=[Xk[0],,Xk[L1]]. Add the cyclic prefix (CP) X ~ k = [ X k [ L − μ ] , ⋯ , X k [ L − 1 ] , X k [ 0 ] , ⋯ , X k [ L − 1 ] ] \tilde{\boldsymbol{X}}_k=[X_k[L-\mu],\cdots,X_k[L-1],X_k[0],\cdots,X_k[L-1]] X~k=[Xk[Lμ],,Xk[L1],Xk[0],,Xk[L1]].

The available transmit power of the k k k-th user at each subcarrier is denoted as b k = [ b k [ 0 ] , ⋯ , b k [ L − 1 ] ] \boldsymbol{b}_k=[b_k[0],\cdots,b_k[L-1]] bk=[bk[0],,bk[L1]]. The transmit power for each user and subcarrier is denoted by B = [ b 1 ⋯ b K ] B=[\boldsymbol{b}_1\cdots \boldsymbol{b}_K] B=[b1bK]. The vector transmitted by the k k k-th device for the data symbols P k = [ P k [ 0 ] , ⋯ , P k [ L − 1 ] ] = ⟨ X k , b k ⟩ \boldsymbol{P}_k = [P_k[0],\cdots,P_k[L-1]] = \langle\boldsymbol{X}_k,\boldsymbol{b}_k\rangle Pk=[Pk[0],,Pk[L1]]=Xk,bk.

At the FC, a different receiver gain can be used for each subcarrier, which is denoted as a = [ a [ 0 ] , ⋯ , a [ L − 1 ] ] \boldsymbol{a}=[a[0],\cdots,a[L-1]] a=[a[0],,a[L1]].

Each subcarrier can be conceptualized as having a frequency offset Δ f \Delta f Δf from its ideal transmit frequency, which is normalized with respect to the bandwidth of two consecutive subcarriers and modeled as a Gaussian random variable ϵ ∼ N ( 0 , σ ϵ 2 ) \epsilon\sim\mathcal{N}(0,\sigma_\epsilon^2) ϵN(0,σϵ2), σ ϵ 2 \sigma_\epsilon^2 σϵ2=0.01.

With inverse fast Fourier transform (IFFT), the n n n-th symbol transmitted by the k k k-th device is given by p k [ n ] = 1 L ∑ l = 0 L − 1 P k [ l ] e j 2 π n l L , ∀ n ∈ L p_k[n]=\frac{1}{\sqrt{L}}\sum_{l=0}^{L-1}P_k[l]e^{j2\pi n\frac{l}{L}}, \forall n\in\mathcal{L} pk[n]=L 1l=0L1Pk[l]ej2πnLl,nL.

The received signal at the n n n-th sample can be written as r [ n ] = ∑ k = 1 K p k [ n ] ∗ h k [ n ] e j 2 π n ϵ L + w [ n ] , ∀ n ∈ L r[n]=\sum_{k=1}^Kp_k[n]*h_k[n]e^{j2\pi n\frac{\epsilon}{L}}+w[n], \forall n\in\mathcal{L} r[n]=k=1Kpk[n]hk[n]ej2πnLϵ+w[n],nL.

With the fast Fourier transform (FFT) to the received samples, received signal of the l l l-th subcarrier is R [ l ] = 1 L ∑ k = 1 K ∑ n = 0 L − 1 ∑ m = 0 L − 1 P k [ m ] H k [ m ] e − j 2 π n m − ϵ L e j 2 π n l L + W [ l ] = ∑ k = 1 K ( P k [ l ] H k [ l ] S ( 0 ) + ∑ m = 0 , L − 1 P k [ m ] H k [ m ] S ( l − m ) ) + W [ l ] , \begin{gathered} R[l]=\frac1L\sum_{k=1}^K\sum_{n=0}^{L-1}\sum_{m=0}^{L-1}P_k[m]H_k[m]e^{-j2\pi n\frac{m-\epsilon}{L}}e^{j2\pi n\frac{l}{L}}+W[l] \\ =\sum_{k=1}^K\left(P_k[l]H_k[l]S(0)+\sum_{m=0,}^{L-1}P_k[m]H_k[m]S(l-m)\right)+W[l], \end{gathered} R[l]=L1k=1Kn=0L1m=0L1Pk[m]Hk[m]ej2πnLmϵej2πnLl+W[l]=k=1K(Pk[l]Hk[l]S(0)+m=0,L1Pk[m]Hk[m]S(lm))+W[l],

W [ l ] = 1 L ∑ n = 0 L − 1 w [ n ] e − j 2 π n l L W[l]=\frac1{\sqrt L}\sum_{n=0}^{L-1}w[n]e^{-j2\pi n\frac lL} W[l]=L 1n=0L1w[n]ej2πnLl is the FFT of the noise at the l l l-th subcarrier. H k [ m ] = 1 L ∑ n = 0 L − 1 h k [ n ] e − j 2 π n m L H_k[m]=\frac1{\sqrt L}\sum_{n=0}^{L-1}h_k[n]e^{-j2\pi n\frac mL} Hk[m]=L 1n=0L1hk[n]ej2πnLm is the channel frequency response of the k k k-th device at the m m m-th subcarrier. Coefficients of the ICI terms which are given as S ( l − m ) = 1 L ∑ n = 0 L − 1 e j 2 π ( l − m + ϵ ) n L = sin ⁡ ( π ( l − m + ϵ ) ) L sin ⁡ ( π ( l − m + ϵ L ) ) e j π ( l − m − ϵ ) ( 1 − 1 L ) , \begin{aligned}S(l-m)&=\frac1L\sum_{n=0}^{L-1}e^{j2\pi(l-m+\epsilon)\frac nL}\\&=\frac{\sin\left(\pi(l-m+\epsilon)\right)}{L\sin\left(\pi\left(\frac{l-m+\epsilon}L\right)\right)}e^{j\pi(l-m-\epsilon)\left(1-\frac1L\right)},\end{aligned} S(lm)=L1n=0L1ej2π(lm+ϵ)Ln=Lsin(π(Llm+ϵ))sin(π(lm+ϵ))e(lmϵ)(1L1),

For the l l l-th subcarrier, the OTA calculation is equal to Y ^ [ l ] = a [ l ] R [ l ] \hat{Y}[l]=a[l]R[l] Y^[l]=a[l]R[l], while the ideally received signal is Y [ l ] = ∑ k = 1 K X k [ l ] . Y[l]=\sum_{k=1}^KX_k[l]. Y[l]=k=1KXk[l].

The combined MSE of all subcarriers is given as M S E I C I = ∑ l = 0 L − 1 a 2 [ l ] ∑ k = 1 K ∑ m = 0 L − 1 b k 2 [ m ] H k 2 [ m ] E [ ∣ S ( l − m ) ∣ 2 ] − 2 ∑ l = 0 L − 1 a [ l ] ∑ k = 1 K b k [ l ] H k [ l ] E [ ∣ S ( 0 ) ∣ ] E [ cos ⁡ ( arg ⁡ { S ( 0 ) } ) ] + L K + σ 2 L ∑ l = 0 L − 1 a 2 [ l ] , \begin{aligned} &\mathrm{MSE}^{\mathrm{ICI}}=\sum_{l=0}^{L-1}a^{2}[l]\sum_{k=1}^{K}\sum_{m=0}^{L-1}b_{k}^{2}[m]H_{k}^{2}[m]\mathbb{E}[|S(l-m)|^{2}] \\ &-2\sum_{l=0}^{L-1}a[l]\sum_{k=1}^Kb_k[l]H_k[l]\mathbb{E}[|S(0)|]\mathbb{E}[\cos{(\arg\{S(0)\})}] \\ &+LK+\frac{\sigma^2}L\sum_{l=0}^{L-1}a^2[l], \end{aligned} MSEICI=l=0L1a2[l]k=1Km=0L1bk2[m]Hk2[m]E[S(lm)2]2l=0L1a[l]k=1Kbk[l]Hk[l]E[S(0)]E[cos(arg{S(0)})]+LK+Lσ2l=0L1a2[l],, where arg ⁡ { ⋅ } \arg\{\cdot\} arg{} symbolizes the argument of the specified complex number.

We can formulate the following problem under the total power constraint for each user
min ⁡ a , B M S E I C I , s . t . C 1 : ∥ b k ∥ 2 2 ≤ P , ∀ k ∈ K . \begin{aligned}&\min_{\boldsymbol{a},\boldsymbol{B}}&&\mathrm{MSE}^{\mathrm{ICI}},\\&\mathbf{s.t.}&&\mathbb{C}_1:\|b_{\boldsymbol{k}}\|_2^2\leq P, \forall k\in\mathcal{K}.\end{aligned} a,Bmins.t.MSEICI,C1:bk22P,kK.

M S E I C I \mathrm{MSE}^{\mathrm{ICI}} MSEICI is convex for one set of variables when the other is fixed. We use the statistical mean of the ICI coefficients between subcarriers S ( l − m ) , ∀ l , m ∈ L S(l-m),\forall l,m\in\mathcal{L} S(lm),l,mL in ( B ) . (\mathbf{B}). (B). Fixing a \boldsymbol{a} a and solving in terms of b k [ m ] , ∀ k ∈ K , m ∈ L b_k[m],\forall k\in\mathcal{K},m\in\mathcal{L} bk[m],kK,mL, the optimal power coefficients can be obtained by considering the Lagrangian function , which is given as

F = ∑ l = 0 L − 1 a 2 [ l ] ∑ k = 1 K ∑ m = 0 L − 1 b k 2 [ m ] H k 2 [ m ] E [ ∣ S ( l − m ) ∣ 2 ] − 2 ∑ l = 0 L − 1 a [ l ] ∑ k = 1 K b k [ l ] H k [ l ] E [ ∣ S ( 0 ) ∣ ] E [ cos ⁡ ( arg ⁡ { S ( 0 ) } ) ] + L K + σ 2 L ∑ l = 0 L − 1 a 2 [ l ] + ∑ k = 1 K λ k ( ∑ m = 0 L − 1 b k 2 [ m ] − P ) . \begin{aligned}\mathcal{F}&=\sum_{l=0}^{L-1}a^2[l]\sum_{k=1}^K\sum_{m=0}^{L-1}b_k^2[m]H_k^2[m]\mathbb{E}[|S(l-m)|^2]\\&-2\sum_{l=0}^{L-1}a[l]\sum_{k=1}^Kb_k[l]H_k[l]\mathbb{E}[|S(0)|]\mathbb{E}[\cos{(\arg\{S(0)\})}]\\&+LK+\frac{\sigma^2}L\sum_{l=0}^{L-1}a^2[l]+\sum_{k=1}^K\lambda_k\left(\sum_{m=0}^{L-1}b_k^2[m]-P\right).\end{aligned} F=l=0L1a2[l]k=1Km=0L1bk2[m]Hk2[m]E[S(lm)2]2l=0L1a[l]k=1Kbk[l]Hk[l]E[S(0)]E[cos(arg{S(0)})]+LK+Lσ2l=0L1a2[l]+k=1Kλk(m=0L1bk2[m]P).

After differentiating, b k [ m ] = a [ m ] H k [ m ] E [ ∣ S ( 0 ) ∣ ] E [ cos ⁡ ( arg ⁡ { S ( 0 ) } ) ] ∑ l = 0 L − 1 a 2 [ l ] H k 2 [ l ] E [ ∣ S ( l − m ) ∣ 2 ] + λ k b_k[m]=\frac{a[m]H_k[m]\mathbb{E}[|S(0)|]\mathbb{E}[\cos(\arg\{S(0)\})]}{\sum_{l=0}^{L-1}a^2[l]H_k^2[l]\mathbb{E}[|S(l-m)|^2]+\lambda_k} bk[m]=l=0L1a2[l]Hk2[l]E[S(lm)2]+λka[m]Hk[m]E[S(0)]E[cos(arg{S(0)})].

Fixing B \boldsymbol{B} B and solving in terms of a [ l ] , ∀ l ∈ L a[l],\forall l\in\mathcal{L} a[l],lL the optimal MSE is achieved for
a [ l ] = ∑ k = 1 K b k [ l ] H k [ l ] E [ ∣ S ( 0 ) ∣ ] E [ cos ⁡ ( arg ⁡ { S ( 0 ) } ) ] ∑ k = 1 K ∑ m = 0 L − 1 b k 2 [ m ] H k 2 [ m ] E [ ∣ S ( l − m ) ∣ 2 ] + σ 2 / L . a[l]=\frac{\sum_{k=1}^Kb_k[l]H_k[l]\mathbb{E}[|S(0)|]\mathbb{E}[\cos{(\arg{\{S(0)\}})}]}{\sum_{k=1}^K\sum_{m=0}^{L-1}b_k^2[m]H_k^2[m]\mathbb{E}[|S(l-m)|^2]+\sigma^2/L}. a[l]=k=1Km=0L1bk2[m]Hk2[m]E[S(lm)2]+σ2/Lk=1Kbk[l]Hk[l]E[S(0)]E[cos(arg{S(0)})].
Iterating between B B B and a a a yields a final solution for both transmitting equalization and receiver gain factors.

The channel gains of all K K K devices and L L L subcarriers H k [ n ] H_k[ n] Hk[n], ∀ k ∈ K \forall k\in \mathcal{K} kK, ∀ n ∈ L \forall n\in \mathcal{L} nL are modeled as circularly symmetric complex Gaussian random variables with variance equal to 1, i.e., H k [ n ] ∼ C N ( 0 , 1 ) . H_k[n]\sim\mathcal{CN}(0,1). Hk[n]CN(0,1). The maximum transmit power for each device is set to P = 10 P=10 P=10, so that the average transmit SNR is 10 dB. Unless otherwise specified, the number of devices. We assume that the ISI symbols due to the delay spread of the channel are less than the CP added symbols, which are chosen so that the CP overhead μ / L \mu/L μ/L is equal to 6.25%.

Help me solve the optimal MSE using MATLAB and draw the optimal MSE curve for K=[10:2:50]


http://www.mrgr.cn/news/40593.html

相关文章:

  • sadTalker本地编译
  • 【GESP】C++一级练习BCQM3020,输入-计算-输出
  • 计算两点结构的斜率
  • 深度学习--------------------长短期记忆网络(LSTM)
  • C++11智能智能指针解析
  • 8G 显存玩转书生大模型 Demo
  • 原来还有【快速排序】 qsort() 函数
  • 迪杰斯特拉算法 Dijkstra‘s Algorithm 详解
  • 音频内容创作难吗?5分钟了解NotebookLM自动生成播客:让内容创作变得如此简单
  • kubeadm部署k8s集群,版本1.23.6;并设置calico网络BGP模式通信,版本v3.25--未完待续
  • 【数据结构与算法】时间复杂度和空间复杂度例题
  • 【C语言指南】数据类型详解(下)——自定义类型
  • 【JavaEE】——多线程常用类
  • 你的虚拟猫娘女友,快来领取!--文心智能体平台
  • 将onnx模型中的类别信息导出到文本
  • JAVA认识异常
  • 数值计算的程序设计问题举例
  • 51单片机的智能家居【proteus仿真+程序+报告+原理图+演示视频】
  • 排水系统C++
  • 第5篇:勒索病毒自救指南----应急响应篇