当前位置: 首页 > news >正文

一个证明-待验证

定理 6 指出,如果 F \mathscr{F} F Ω \Omega Ω 中的一个集代数,那么由 F \mathscr{F} F 生成的最小的 σ \sigma σ-代数 M ( F ) \mathfrak{M}(\mathscr{F}) M(F) 等于 σ ( F ) \sigma(\mathscr{F}) σ(F),即 F \mathscr{F} F 的最小 σ \sigma σ-代数。此外,任何包含 F \mathscr{F} F 的单调类必然包含 σ ( F ) \sigma(\mathscr{F}) σ(F)

证明:

  1. 定义和初步观察:

    • 集代数 F \mathscr{F} F 意味着 F \mathscr{F} F Ω \Omega Ω 的一个子集族,并且对于任意的 A , B ∈ F A, B \in \mathscr{F} A,BF,有 A ∪ B , A ∩ B ∈ F A \cup B, A \cap B \in \mathscr{F} AB,ABF,并且 Ω ∈ F \Omega \in \mathscr{F} ΩF
    • σ ( F ) \sigma(\mathscr{F}) σ(F) 表示由 F \mathscr{F} F 生成的最小的 σ \sigma σ-代数,即包含 F \mathscr{F} F 并且对于任意的 A 1 , A 2 , … ∈ F A_1, A_2, \ldots \in \mathscr{F} A1,A2,F,有 ⋃ i = 1 ∞ A i ∈ σ ( F ) \bigcup_{i=1}^{\infty} A_i \in \sigma(\mathscr{F}) i=1Aiσ(F) A c ∈ σ ( F ) A^c \in \sigma(\mathscr{F}) Acσ(F)(其中 A c A^c Ac 表示 A A A 的补集)。
  2. F ⊆ σ ( F ) \mathscr{F} \subseteq \sigma(\mathscr{F}) Fσ(F)

    • 显然, F \mathscr{F} F 中的每个集合都属于 σ ( F ) \sigma(\mathscr{F}) σ(F),因为 σ ( F ) \sigma(\mathscr{F}) σ(F) 是包含 F \mathscr{F} F 的最小 σ \sigma σ-代数。
  3. σ ( F ) \sigma(\mathscr{F}) σ(F) σ \sigma σ-代数:

    • σ ( F ) \sigma(\mathscr{F}) σ(F) 包含 Ω \Omega Ω
    • 对于任意的 A ∈ σ ( F ) A \in \sigma(\mathscr{F}) Aσ(F) A c ∈ σ ( F ) A^c \in \sigma(\mathscr{F}) Acσ(F)
    • 对于任意的可数序列 A 1 , A 2 , … ∈ σ ( F ) A_1, A_2, \ldots \in \sigma(\mathscr{F}) A1,A2,σ(F) ⋃ i = 1 ∞ A i ∈ σ ( F ) \bigcup_{i=1}^{\infty} A_i \in \sigma(\mathscr{F}) i=1Aiσ(F)
  4. M ( F ) ⊆ σ ( F ) \mathfrak{M}(\mathscr{F}) \subseteq \sigma(\mathscr{F}) M(F)σ(F)

    • M ( F ) \mathfrak{M}(\mathscr{F}) M(F) 是包含 F \mathscr{F} F 的最小的 σ \sigma σ-代数。
    • 由于 σ ( F ) \sigma(\mathscr{F}) σ(F) 也是包含 F \mathscr{F} F σ \sigma σ-代数,并且 M ( F ) \mathfrak{M}(\mathscr{F}) M(F) 是最小的,所以 M ( F ) ⊆ σ ( F ) \mathfrak{M}(\mathscr{F}) \subseteq \sigma(\mathscr{F}) M(F)σ(F)
  5. σ ( F ) ⊆ M ( F ) \sigma(\mathscr{F}) \subseteq \mathfrak{M}(\mathscr{F}) σ(F)M(F)

    • 我们需要证明 σ ( F ) \sigma(\mathscr{F}) σ(F) 满足 M ( F ) \mathfrak{M}(\mathscr{F}) M(F) 的定义。
    • σ ( F ) \sigma(\mathscr{F}) σ(F) 包含 F \mathscr{F} F
    • σ ( F ) \sigma(\mathscr{F}) σ(F) σ \sigma σ-代数,所以它满足 M ( F ) \mathfrak{M}(\mathscr{F}) M(F) 的要求。
    • 由于 M ( F ) \mathfrak{M}(\mathscr{F}) M(F) 是最小的,所以 σ ( F ) ⊆ M ( F ) \sigma(\mathscr{F}) \subseteq \mathfrak{M}(\mathscr{F}) σ(F)M(F)
  6. 结论:

    • 由于 M ( F ) ⊆ σ ( F ) \mathfrak{M}(\mathscr{F}) \subseteq \sigma(\mathscr{F}) M(F)σ(F) σ ( F ) ⊆ M ( F ) \sigma(\mathscr{F}) \subseteq \mathfrak{M}(\mathscr{F}) σ(F)M(F),我们可以得出 M ( F ) = σ ( F ) \mathfrak{M}(\mathscr{F}) = \sigma(\mathscr{F}) M(F)=σ(F)
  7. 包含 F \mathscr{F} F 的任一单调类必包含 σ ( F ) \sigma(\mathscr{F}) σ(F)

    • 单调类是指如果一个集合族中的集合属于该类,那么它的任意子集也属于该类。
    • 由于 σ ( F ) \sigma(\mathscr{F}) σ(F) 是由 F \mathscr{F} F 生成的,并且包含 F \mathscr{F} F 的所有可数并集和补集,任何包含 F \mathscr{F} F 的单调类必须也包含这些并集和补集,因此必须包含 σ ( F ) \sigma(\mathscr{F}) σ(F)

这就完成了定理的证明。


http://www.mrgr.cn/news/37043.html

相关文章:

  • Redis配置文件详解(上)
  • Java文件上传同时传入JSON参数
  • 11. Map和Set
  • RabbitMQ下载安装运行环境搭建
  • 大数据新视界 --大数据大厂之数据清洗工具 OpenRefine 实战:清理与转换数据
  • 第18周 3-过滤器
  • 什么是开放式耳机?具有什么特色?非常值得入手的蓝牙耳机推荐
  • Python_list去重复值remove_duplicates
  • 【中级通信工程师】终端与业务(三):电信业务
  • Qt | Linux+QFileSystemWatcher文件夹和文件监视(例如监视U盘挂载目录)
  • ISP下载,IAP,ICP,USB转TTL下载SWIM、DAP-link、CMSIS-DAP、ST-LINK,SPI(通信方式),
  • LeetCode 201. 数字范围按位与
  • 哈希查找算法
  • 六、设计模式-6.2、代理模式
  • MCUboot 和 U-Boot区别
  • 数据库 - MySQL的事务
  • Python实现判别分析
  • c++继承详解
  • MySQL多版本并发控制MVCC实现原理
  • AIGAME背后的强大背景与AI币价值的崛起