当前位置: 首页 > news >正文

回归预测 | Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测

目录

    • 回归预测 | Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)

2.选择最佳的SVM核函数参数c和g;

3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。

4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源处下载Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测。
%%  参数设置
%%  优化算法
[Best_score,Best_pos, curve] = SO(pop, Max_iteration, lb, ub, dim, fun); %%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); %%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')%%  相关指标计算
%%  均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229


http://www.mrgr.cn/news/36329.html

相关文章:

  • vue项目报错: At least one is required in a single file component.的主要原因及解决办法
  • linux服务器安装原生的php环境
  • Adaptive Object Detection with Dual Multi-Label Prediction
  • JS面试真题 part6
  • Structure-Aware Transformer for Graph Representation Learning
  • 量化交易四大邪术之三:春去花还在
  • 《动手学深度学习》笔记2.2——神经网络从基础→进阶 (参数管理-每层的权重/偏置)
  • docker中搭建nacos并将springboot项目的配置文件转移到nacos中
  • Proto3 深度解读:Protobuf 的用法与实例分析(C++)
  • Springboot jPA+thymeleaf实现增删改查
  • 第二十八篇——用间篇:使用间谍,先学习花钱的价值观
  • Volume数据管理
  • 前缀和(3)_寻找数组的中心下标
  • 【Java】注解与单元测试的使用【主线学习笔记】
  • 给自己的笔记本加一个公网IP
  • YOLOv5白皮书-第Y2周:训练自己的数据集(云jupyter运行版 )
  • 求二叉树的高度(递归和非递归)
  • JDK1.8与JDK17相互切换
  • 市面第一款 C++ 版本的U盘装机软件(即将上线)
  • 自然场景文本定位系统源码分享