当前位置: 首页 > news >正文

秃姐学AI系列之:实战Kaggle比赛:图像分类(CIFAR-10)

目录

准备工作

整理数据集

将验证集从原始的训练集中拆分出来

整理测试集

使用函数

图像增广

读取数据集

定义模型

定义训练函数

训练和验证数据集

对测试集进行分类并提交结果


准备工作

首先导入竞赛需要的包和模块 

import collections
import math
import os
import shutil    # python用来操作文件很方便的一个包
import pandas as pd
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

使用d2l里面的一个小规模样本来代替完整的 CIFAR-10 数据集,包含前1000个训练图像和5个随机测试图像的数据集的小规模样本

d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip','2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')# 如果使用完整的Kaggle竞赛的数据集,设置demo为False
demo = Trueif demo:data_dir = d2l.download_extract('cifar10_tiny')
else:data_dir = '../data/cifar-10/'

整理数据集

我们需要整理数据集来训练和测试模型。

首先,我们用以下函数读取CSV文件中的标签,它返回一个字典,该字典将文件名中不带扩展名的部分映射到其标签。

def read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('# 训练样本 :', len(labels))
print('# 类别 :', len(set(labels.values())))# 训练样本 : 1000
# 类别 : 10

将验证集从原始的训练集中拆分出来

我们定义 reorg_train_valid 函数来将验证集从原始的训练集中拆分出来。

此函数中的参数 valid_ratio 是验证集中的样本数与原始训练集中的样本数之比。 更具体地说,令 n 等于样本最少的类别中的图像数量,而 r 是比率。验证集将为每个类别拆分出 max(⌊nr⌋,1) 张图像。

让我们以valid_ratio=0.1为例,由于原始的训练集有50000张图像,因此 train_valid_test/train 路径中将有45000张图像用于训练,而剩下5000张图像将作为路径 train_valid_test/valid 中的验证集。组织数据集后,同类别的图像将被放置在同一文件夹下。

def copyfile(filename, target_dir):"""将文件复制到目标目录"""os.makedirs(target_dir, exist_ok=True)shutil.copy(filename, target_dir)def reorg_train_valid(data_dir, labels, valid_ratio):"""将验证集从原始的训练集中拆分出来"""# 训练数据集中样本最少的类别中的样本数n = collections.Counter(labels.values()).most_common()[-1][1]# 验证集中每个类别的样本数n_valid_per_label = max(1, math.floor(n * valid_ratio))label_count = {}for train_file in os.listdir(os.path.join(data_dir, 'train')):label = labels[train_file.split('.')[0]]fname = os.path.join(data_dir, 'train', train_file)copyfile(fname, os.path.join(data_dir, 'train_valid_test','train_valid', label))if label not in label_count or label_count[label] < n_valid_per_label:copyfile(fname, os.path.join(data_dir, 'train_valid_test','valid', label))label_count[label] = label_count.get(label, 0) + 1else:copyfile(fname, os.path.join(data_dir, 'train_valid_test','train', label))return n_valid_per_label

整理测试集

下面的reorg_test函数用来在预测期间整理测试集,以方便读取。

def reorg_test(data_dir):"""在预测期间整理测试集,以方便读取"""for test_file in os.listdir(os.path.join(data_dir, 'test')):copyfile(os.path.join(data_dir, 'test', test_file),os.path.join(data_dir, 'train_valid_test', 'test','unknown'))

使用函数

最后,我们使用一个函数来调用前面定义的函数read_csv_labelsreorg_train_validreorg_test

在这里,我们只将样本数据集的批量大小设置为32。 在实际训练和测试中,应该使用Kaggle竞赛的完整数据集,并将 batch_size设置为更大的整数,例如128。 我们将10%的训练样本作为调整超参数的验证集。

def reorg_cifar10_data(data_dir, valid_ratio):labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))reorg_train_valid(data_dir, labels, valid_ratio)reorg_test(data_dir)batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)

图像增广

使用图像增广来解决过拟合的问题。

例如在训练中,可以随机水平翻转图像;还可以对彩色图像的三个RGB通道执行标准化。 下面,列出了其中一些可以调整的操作。

transform_train = torchvision.transforms.Compose([# 在高度和宽度上将图像放大到40像素的正方形torchvision.transforms.Resize(40),# 随机裁剪出一个高度和宽度均为40像素的正方形图像,# 生成一个面积为原始图像面积0.64~1倍的小正方形,# 然后将其缩放为高度和宽度均为32像素的正方形torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),ratio=(1.0, 1.0)),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),# 标准化图像的每个通道torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010])])

在测试期间,我们只对图像执行标准化,以消除评估结果中的随机性。

transform_test = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010])])

读取数据集

每个样本都包括一张图片和一个标签。

在训练期间,我们需要指定上面定义的所有图像增广操作。当验证集在超参数调整过程中用于模型评估时,不应引入图像增广的随机性。在最终预测之前,我们根据训练集和验证集组合而成的训练模型进行训练,以充分利用所有标记的数据。

train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train_valid_test', folder),transform=transform_train) for folder in ['train', 'train_valid']]valid_ds, test_ds = [torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train_valid_test', folder),transform=transform_test) for folder in ['valid', 'test']]

指定上面定义的所有图像增广操作 

train_iter, train_valid_iter = [torch.utils.data.DataLoader(# shuffle要开随机梯度下降,drop_last:如果最后一组不满batch_size,true会丢掉最后一节dataset, batch_size, shuffle=True, drop_last=True)for dataset in (train_ds, train_valid_ds)]valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,drop_last=True)test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,drop_last=False)    # 但是test的不能丢

定义模型

模型直接用了一个ResNet-18

def get_net():num_classes = 10net = d2l.resnet18(num_classes, 3)return netloss = nn.CrossEntropyLoss(reduction="none")

定义训练函数

# lr_period,lr_decay:学习率下降的一种方法
# lr_period:每隔多少了epoch
# lr_decay:下降多少(0.5:减半)
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,lr_decay):trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9,weight_decay=wd)# 调整lr 把decay值*lrscheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)num_batches, timer = len(train_iter), d2l.Timer()legend = ['train loss', 'train acc']if valid_iter is not None:legend.append('valid acc')animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=legend)# 多GPU训练net = nn.DataParallel(net, device_ids=devices).to(devices[0])for epoch in range(num_epochs):net.train()metric = d2l.Accumulator(3)# 为了展示 画图用的 正常训练不需要for i, (features, labels) in enumerate(train_iter):timer.start()l, acc = d2l.train_batch_ch13(net, features, labels,loss, trainer, devices)metric.add(l, acc, labels.shape[0])timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[2],None))if valid_iter is not None:valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)animator.add(epoch + 1, (None, None, valid_acc))# 每个epoch之后更新一下lrscheduler.step()measures = (f'train loss {metric[0] / metric[2]:.3f}, 'f'train acc {metric[1] / metric[2]:.3f}')if valid_iter is not None:measures += f', valid acc {valid_acc:.3f}'print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'f' examples/sec on {str(devices)}')

训练和验证数据集

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,lr_decay)

对测试集进行分类并提交结果

在获得具有超参数的满意的模型后,我们使用所有标记的数据(包括验证集)来重新训练模型并对测试集进行分类。

net, preds = get_net(), []
# 使用完整的数据集训练模型
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,lr_decay)for X, _ in test_iter:y_hat = net(X.to(devices[0]))# 占比最大的值取出来preds.extend(y_hat.argmax(dim=1).type(torch.int32).cpu().numpy())
sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id': sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.classes[x])
# 存成一个csv
df.to_csv('submission.csv', index=False)

http://www.mrgr.cn/news/24001.html

相关文章:

  • 技术美术一百问(01)
  • 大学生必看干货!分享5款ai写毕业论文软件
  • Java项目: 基于SpringBoot+mybatis+maven衣依服装销售平台服装商城分前后台(含源码+数据库+毕业论文)
  • 【代码随想录】字符串
  • windows手工杀毒-关闭恶意弹窗
  • Frozen CLIP: A Strong Backbone for Weakly Supervised Semantic Segmentation
  • gpio子系统
  • 【Nacos】健康检查与环境隔离
  • Shell入门
  • 二叉树详解
  • MFC之CString类及其成员函数用法详解
  • 【表达式求值】
  • langgraph tool如何发送自定义事件
  • Leetcode - 周赛414
  • 帧缓冲 framebuffer
  • Pytorch维度转换操作:view,reshape,permute,flatten函数详解
  • ZAB协议(算法)
  • 精选干货!分享5款免费论文生成软件
  • 【Solidity】类型
  • Vue--》视觉盛宴:提升可视化大屏分辨率适配的技巧