当前位置: 首页 > news >正文

【Python系列】SQLAlchemy 基本介绍

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
img

  • 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老
  • 导航
    • 檀越剑指大厂系列:全面总结 java 核心技术,jvm,并发编程 redis,kafka,Spring,微服务等
    • 常用开发工具系列:常用的开发工具,IDEA,Mac,Alfred,Git,typora 等
    • 数据库系列:详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
    • 新空间代码工作室:提供各种软件服务,承接各种毕业设计,毕业论文等
    • 懒人运维系列:总结好用的命令,解放双手不香吗?能用一个命令完成绝不用两个操作
    • 数据结构与算法系列:总结数据结构和算法,不同类型针对性训练,提升编程思维,剑指大厂

非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

博客目录

    • 一.基础介绍
      • 1. SQLAlchemy 的起源
      • 2. SQLAlchemy 的核心组件
        • 2.1 核心 SQL 工具包
        • 2.2 ORM 层
      • 3. SQLAlchemy 的优势
        • 3.1 灵活性
        • 3.2 跨数据库支持
        • 3.3 强大的社区支持
    • 二.实战步骤
      • 1.数据库配置
      • 2.model
      • 3.连接配置
      • 4.调用 SQL

一.基础介绍

SQLAlchemy 是一个 Python 的 SQL 工具包和对象关系映射(ORM)工具,它提供了一个高层的 ORM 以及底层的 SQL 表达式语言。SQLAlchemy 是开源的,并且可以在商业和非商业项目中免费使用。它支持多种数据库系统,包括 PostgreSQL、MySQL、SQLite 等。
在这里插入图片描述

1. SQLAlchemy 的起源

SQLAlchemy 最初由 Michael Bayer 在 2005 年创建,目的是提供一个全面的 SQL 工具包和 ORM 解决方案,以满足 Python 社区的需求。随着时间的推移,SQLAlchemy 不断发展和完善,成为了 Python 数据库编程领域中最受欢迎的库之一。

2. SQLAlchemy 的核心组件

2.1 核心 SQL 工具包

SQLAlchemy 的核心 SQL 工具包提供了构建 SQL 查询的功能,它允许开发者以 Pythonic 的方式编写 SQL 语句。这包括了对数据库表的创建、数据的增删改查等操作。

2.2 ORM 层

ORM(Object-Relational Mapping)层是 SQLAlchemy 的另一个重要组成部分,它允许开发者使用 Python 类和对象来表示数据库中的表和行。ORM 层抽象了数据库操作,使得开发者可以不必编写 SQL 语句,而是通过操作 Python 对象来间接地与数据库交互。

3. SQLAlchemy 的优势

3.1 灵活性

SQLAlchemy 提供了灵活的 SQL 构建工具,开发者可以自由地编写 SQL 语句,同时也可以利用 ORM 层提供的抽象来简化数据库操作。

3.2 跨数据库支持

SQLAlchemy 支持多种数据库系统,这意味着开发者可以使用相同的代码库来操作不同的数据库,而不需要为每种数据库编写特定的代码。

3.3 强大的社区支持

由于 SQLAlchemy 的流行,它拥有一个活跃的社区,开发者可以在社区中找到大量的资源和帮助,包括文档、教程和第三方库。

二.实战步骤

1.数据库配置

# 数据库
database:TYPE: mysqlDATABASE_URL: mysql://root:xxx@xxxx:9306/test?serverTimezone=Asia/ShanghaiUSERNAME: rootPASSWORD: xxxHOST: xxxxPORT: 9306DBNAME: testMAX_OVERFLOW: 60POOL_TIMEOUT: 120POOL_SIZE: 30URL_PROPERTY: ?charset=utf8ECHO: True

2.model

from datetime import datetimeimport pytz
from sqlalchemy import String, Column, Text, DateTime, JSON
from sqlalchemy.ext.asyncio import AsyncAttrs
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column, attributesdef get_beijing_now():# 获取当前系统时区return datetime.now(pytz.timezone('Asia/Shanghai'))# 基类
class Base(AsyncAttrs, DeclarativeBase):id: Mapped[int] = mapped_column(primary_key=True)create_time = Column(DateTime, default=get_beijing_now, nullable=False)update_time = Column(DateTime, default=get_beijing_now, onupdate=get_beijing_now, nullable=False)def to_dict(self):"""转为字典输出:return:"""return {c.name: getattr(self, c.name) for c in self.__table__.columns}@repr_generator
class AlchemyEntitySchemas(Base):__tablename__ = "entity_schemas"name = Column(String(255), nullable=False, comment='名称')

3.连接配置

from sqlalchemy.pool import QueuePool
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.exc import SQLAlchemyError
from sqlalchemy.sql import text
from base.config import get_config_key
from urllib.parse import quote_plus as urlquote
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession, AsyncEngine, async_sessionmakerclass Database:def __init__(self, url, pool_size=30, pool_timeout=1200, max_overflow=60, echo=False):try:self.engine = create_engine(url, poolclass=QueuePool, pool_size=pool_size,max_overflow=max_overflow, pool_timeout=pool_timeout,echo=echo, pool_recycle=7200, pool_pre_ping=True, echo_pool=echo)self.Session = sessionmaker(bind=self.engine, expire_on_commit=False, autocommit=False, autoflush=False)print("Database connected successfully.")except SQLAlchemyError as e:print(f"Error connecting to the database: {e}")def get_session(self):return self.Session()@staticmethoddef close_session(_session):_session.close()@staticmethoddef execute_query(query, _session):try:result = _session.execute(query)return result.fetchall()except SQLAlchemyError as e:print(f"Error executing query: {e}")return Nonefinally:Database.close_session(_session)class SyncDatabase:async_engine: AsyncEngine = Noneasync_session = Nonedef __init__(self, url, pool_size=30, pool_timeout=1200, max_overflow=60, echo=False):self.url = urlself.max_overflow = max_overflowself.pool_timeout = pool_timeoutself.pool_size = pool_sizeself.echo = echoself.connect()def connect(self):"""创建数据库引擎和会话类"""try:self.async_engine = create_async_engine(self.url, echo=self.echo, pool_size=pool_size,max_overflow=max_overflow, pool_timeout=pool_timeout,pool_recycle=7200,pool_pre_ping=True, echo_pool=self.echo)self.async_session = async_sessionmaker(bind=self.async_engine, class_=AsyncSession, expire_on_commit=False,autocommit=False, autoflush=False)print("Database connected successfully.")except SQLAlchemyError as e:print(f"Error connecting to the database: {e}")def get_db_url():userName = get_config_key("database", "USERNAME")password = get_config_key("database", "PASSWORD")dbHost = get_config_key("database", "HOST")dbPort = get_config_key("database", "PORT")dbName = get_config_key("database", "DBNAME")urlProperty = get_config_key("database", "URL_PROPERTY")if dbName is None:return f'mysql+pymysql://{userName}:{urlquote(password)}@{dbHost}:{dbPort}{urlProperty}'else:return f'mysql+pymysql://{userName}:{urlquote(password)}@{dbHost}:{dbPort}/{dbName}{urlProperty}'def get_sync_db_url():userName = get_config_key("database", "USERNAME")password = get_config_key("database", "PASSWORD")dbHost = get_config_key("database", "HOST")dbPort = get_config_key("database", "PORT")dbName = get_config_key("database", "DBNAME")urlProperty = get_config_key("database", "URL_PROPERTY")if dbName is None:return f'mysql+aiomysql://{userName}:{urlquote(password)}@{dbHost}:{dbPort}{urlProperty}'else:return f'mysql+aiomysql://{userName}:{urlquote(password)}@{dbHost}:{dbPort}/{dbName}{urlProperty}'url = get_db_url()
max_overflow = get_config_key("database", "MAX_OVERFLOW")
pool_timeout = get_config_key("database", "POOL_TIMEOUT")
pool_size = get_config_key("database", "POOL_SIZE")
echo = get_config_key("database", "ECHO")# sqlalchemy实际操作对象,导入的时候应该导入这个对象
get_sqlalchemy_db = Database(url, pool_size=pool_size, pool_timeout=pool_timeout, max_overflow=max_overflow, echo=echo)# 异步的
SYNC_DB_URI = get_sync_db_url()
_async_engine = create_async_engine(SYNC_DB_URI, echo=echo, pool_size=pool_size,max_overflow=max_overflow, pool_timeout=pool_timeout, pool_recycle=7200,pool_pre_ping=True, echo_pool=echo)
# 异步IO的 sqlalchemy实际操作对象,导入的时候应该导入这个对象
async_session_factory = async_sessionmaker(bind=_async_engine, class_=AsyncSession, expire_on_commit=False,autocommit=False, autoflush=False)

在这里插入图片描述

4.调用 SQL

@staticmethod
async def find_by_name(name: str):"""根据名称查询"""db = get_sqlalchemy_dbtry:with Session(db.engine) as session:stmt = select(AlchemySchemas)if name:stmt = stmt.where(AlchemySchemas.name == name)schemas_infos = session.scalars(stmt).all()return [schemas_info.to_dict() for schemas_info in schemas_infos] if schemas_infos else Noneexcept SQLAlchemyError as e:print(f"An error occurred: {e}")return Nonefinally:db.close_session(session)

觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙

img


http://www.mrgr.cn/news/16427.html

相关文章:

  • SPR系列单点激光雷达测距传感器|模组之CAN-OPEN软件调试说明
  • ​字​节​一​面​
  • Vue.js入门系列(十九):深入理解和应用组件自定义事件
  • [ABC133A] T or T
  • 23. 如何使用Collections.synchronizedList()方法来创建线程安全的集合?有哪些注意事项?
  • 设计模式之外观模式
  • 今日(2024年8月30日)科技新闻(本周)
  • 【Rust】——高级类型
  • win10多个wifi快速切换脚本
  • 15年让爱轮回
  • 黑神话悟空-提高画质、防卡顿、修复等各种功能、各种CT表、各种存档、武器包、人物、装备替换等185+MOD合集
  • “添加”业务功能开发
  • 通过python 操作mysql 脚本
  • “品牌VS套路:华为、格行、中兴随身WiFi谁才是真良心?“
  • VMware中CentOS虚拟机配置网络(Net模式)
  • git commit添加emoji表情
  • 从零开始自学Python-之-常用库篇(十四)python的异步编程库asyncio
  • Tampermonkey 安装
  • Call openai-node in the backend or call https in the frontend?
  • 【flask】python框架flask的hello world