当前位置: 首页 > news >正文

12.torchvision中的数据集使用

torchvision中的数据集使用

需要学习知识:

  1. 如何把数据集(多张图片)和 transforms 结合在一起。

  2. 标准数据集如何下载、查看、使用。

进入pytorch官网,可以看到pytorch文档里分了不同的块,如下图,标出了常用的几个模块,后面几个不怎么常用

image-20240628005457194

pytorch网站地址:https://pytorch.org/vision/0.9/

各个模块作用

(1)torchvision.datasets

如:COCO 目标检测、语义分割;MNIST 手写文字;CIFAR 物体识别

(2)torchvision.io

输入输出模块,不常用

(3)torchvision.models

提供一些比较常见的神经网络,有的已经预训练好,比较重要,后面会使用到,如分类模型、语义分割模型、目标检测、视频分类等

(4)torchvision.ops

torchvision提供的一些比较少见的特殊的操作,基本不常用

(5)torchvision.transforms

之前讲解过

(6)torchvision.utils

提供一些常用的小工具,如TensorBoard

本节主要讲解torchvision.datasets,以及它如何跟transforms联合使用

image-20240628010622698

CIFAR10数据集

待会用来示例,它一般是用来进行物体识别的

image-20240628010911096

1.数据集如何下载

#如何使用torchvision提供的标准数据集
import torchvisiontrain_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True) #root使用相对路径,会在该.py所在位置创建一个叫dataset的文件夹,同时把数据保存进去。用Ctrl加P查看需要参数。
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)

image-20240704171527501

运行结果:

image-20240704171552730

数据集下载过慢时:

   获得下载链接后,把下载链接放到迅雷中,会首先下载压缩文件tar.gz,之后会对该压缩文件进行解压,里面会有相应的数据集。采用迅雷下载完毕后,在PyCharm里新建directory,名字也叫dataset,再将下载好的压缩包复制进去,download依然为True,运行后,会自动解压该数据

image-20240704171645191

CIFAR10在迅雷下载完解压到dataset文件夹里,得到cifar-10-batches-py

image-20240704172057685

2.数据集如何查看与使用

import torchvisiontrain_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)print(test_set[0])  # 查看测试集中的第一个数据,是一个元组:(img, target)
print(test_set.classes)  # 列表,输出['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']img, target = test_set[0]
print(img) #输出<PIL.Image.Image image mode=RGB size=32x32 at 0x25D5FD20B38>
print(target)  # 输出:3。输出为列表第几个类别。从0开始数,这里类别为cat列表第四个
print(test_set.classes[target])  # cat
img.show()

image-20240704175708357

3.CIFAR10数据集 介绍

CIFAR10 数据集包含了6万张32×32像素的彩色图片,图片有10个类别,每个类别有6千张图像,其中有5万张图像为训练图片,1万张为测试图片。

image-20240704174937471

image-20240704174955200

如何把数据集(多张图片)和 transforms 结合在一起

CIFAR10数据集原始图片是PIL Image,如果要给pytorch使用,需要转为tensor数据类型(转成tensor后,就可以用tensorboard了)

transforms 更多地是用在 datasets 里 transform 的选项中

import torchvision
from torch.utils.tensorboard import SummaryWriter#把dataset_transform运用到数据集中的每一张图片,都转为tensor数据类型
dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()
])train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True) #root使用相对路径,会在该.py所在位置创建一个叫dataset的文件夹,同时把数据保存进去
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)# print(test_set[0])writer = SummaryWriter("p10")
#显示测试数据集中的前10张图片
for i in range(10):img,target = test_set[i]writer.add_image("test_set",img,i)  # img已经转成了tensor类型writer.close()

运行后在 terminal 里输入

tensorboard --logdir="p10"

可以看到tensorboard中显示了测试数据集中的前10张图片

image-20240704181231434
`

运行后在 terminal 里输入

tensorboard --logdir="p10"

可以看到tensorboard中显示了测试数据集中的前10张图片

[外链图片转存中…(img-3xIOAPLq-1724861342898)]


http://www.mrgr.cn/news/13521.html

相关文章:

  • mqtt的理解
  • 手机二要素api接口是什么?怎么对接使用?
  • 5步实现猫眼电影爬虫与k-means算法可视化分析
  • RabbitMQ实战-JavaDemo
  • 微服务CI/CD实践(二)服务器先决准备
  • blender修改材质时出现颜色丢失的问题
  • Windows TCP/IP IPv6 DDos远程蓝屏复现及修复(CVE-2024-38063)
  • .NET_web前端框架_layui_栅格布局
  • 数据世界的新篇章:精通INSERT INTO数据插入艺术
  • 【计算机网络】计算机网络的分层结构
  • HTML简单了解和基础知识记录
  • 爆改YOLOv8|利用全新的聚焦式线性注意力模块Focused Linear Attention 改进yolov8(v1)
  • Android Auto推出全新Google助手设计
  • 金风科技巴西风电装备制造基地正式投运
  • win10配置adb环境变量
  • 程序员自我提升
  • 买电脑如何选择显卡?
  • 给Go+Sciter开发的桌面客户端软件添加系统托盘图标
  • 零基础国产GD32单片机编程入门(二)GPIO输入中断含源码
  • 江协科技STM32学习- P7 GPIO输入