金融风控信用评分卡建模(Kaggle give me credit数据集)

news/2024/5/8 19:46:35

1 数据预处理数据

数据来源于Kaggle的Give Me Some Credit,包括25万条个人财务情况的样本数据

1.1 导包读数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
import seaborn as sns
from scipy import stats
import copy%matplotlib inline

读数据

# 读取数据 
train_data = pd.read_csv('cs-training.csv')# 选择除了第一列以外的所有列 
train_data = train_data.iloc[:,1:]# 查看数据的基本信息
train_data.info()

1.2 缺失值处理

查看数据缺失率

# 计算每列的缺失值数量  
missing_values = train_data.isnull().sum()  # 计算每列的缺失率  
missing_rate = (missing_values / len(train_data)) * 100  # 输出缺失率  
print(missing_rate)

 月收入和家属人数两个变量的缺失值占比分别为19.82%、2.62%

缺失较多的月收入,根据变量之间的相关关系,采用随机森林法填补缺失值

缺失较少的NumberOfDependts,对总体模型不会造成太大影响,直接删除缺失样本

# 假设已经按照需求重新排列了列  
mData = train_data.iloc[:,[5,0,1,2,3,4,6,7,8,9]]  # 根据MonthlyIncome列是否有缺失值分割数据  
train_known = mData[mData.MonthlyIncome.notnull()]  
train_unknown = mData[mData.MonthlyIncome.isnull()]  # 使用Pandas的iloc方法来提取特征和目标变量  
# 注意:iloc是基于整数位置的,所以这里的0和1对应重新排列后的列位置  
train_X_known = train_known.iloc[:, 1:]  # 特征,从第二列开始到最后一列  
train_y_known = train_known.iloc[:, 0]   # 目标变量,第一列  # 训练随机森林回归模型  
rfr = RandomForestRegressor(random_state=0, n_estimators=200, max_depth=3, n_jobs=-1)  
rfr.fit(train_X_known, train_y_known)  # 使用模型预测train_unknown中的Missing MonthlyIncome值  
train_X_unknown = train_unknown.iloc[:, 1:]  # 特征,从第二列开始到最后一列  
predicted_y = rfr.predict(train_X_unknown).round(0)  # 将预测值填充回原DataFrame的相应位置  
train_data.loc[train_unknown.index, 'MonthlyIncome'] = predicted_y  # 删除含有缺失值的行  
train_data = train_data.dropna()  # 删除重复的行  
train_data = train_data.drop_duplicates()

1.3 处理异常值

异常值通常用箱型图来判断

# 处理异常值
# 选择特定的列来绘制箱线图
train_box = train_data.iloc[:,[3,7,9]]# 创建一个新的图形
plt.figure(figsize=(10, 5))  # 可以调整图形大小以适应您的需要# 绘制箱线图
train_box.boxplot()# 设置图形标题和坐标轴标签(如果需要)
plt.title('Box Plot of Selected Columns')
plt.ylabel('Values')# 显示图形
plt.show()

查看全部列

train_box = train_data.iloc[:, :]

 删除变量NumberOfTime30-59DaysPastDueNotWorse、NurmberOfTimes90DaysLate、NumberOfTime60-89DaysPastDueNotWorse的异常值,剔除其中一个变量的异常值,其他变量的异常值也会相应被剔除。

 客户的年龄为0时,通常认为该值为异常值,直接剔除。

# 舍弃age为0
train_data = train_data[train_data['NumberOfTime30-59DaysPastDueNotWorse']<90]
train_data = train_data[train_data.age>0]
#使好客户为1,违约客户为0
train_data['SeriousDlqin2yrs'] = 1-train_data['SeriousDlqin2yrs'] 

1.4 数据切分

为了验证模型性能,将数据切分化为训练集和测试集,测试集取原数据的30%。

from sklearn.model_selection import train_test_split  # 假设 train_data 是一个 Pandas DataFrame,将其分为特征和目标变量  
y = train_data.iloc[:, 0]  # 目标变量,假设在第一列  
X = train_data.iloc[:, 1:]  # 特征变量,从第二列到最后一列  # 使用 train_test_split 来分割数据为训练集和测试集  
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=0)  # 使用 Pandas 的 concat 函数将训练集和测试集的目标变量和特征变量合并回 DataFrame  
ntrain_data = pd.concat([pd.DataFrame(train_y), train_X], axis=1)  
ntest_data = pd.concat([pd.DataFrame(test_y), test_X], axis=1)  # 注意:将 train_y 和 test_y 转换为 DataFrame 是为了确保它们与 train_X 和 test_X 的索引对齐  
# 如果 train_y 和 test_y 是 Series,并且它们的索引与 train_X 和 test_X 的索引一致,那么可以直接合并

2 探索性分析

在建立模型之前,一般会对现有的数据进行 探索性数据分析(Exploratory Data Analysis) 。 EDA是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索。

常用的探索性数据分析方法有:直方图、散点图和箱线图等。

年龄的分布大致呈正态分布,符合统计分析假设。

age = ntrain_data['age']
sns.distplot(age)

月收入的分布也大致呈正态分布。

mi = ntrain_data[['MonthlyIncome']]
sns.distplot(mi)

3 变量选择

3.1 分箱处理

3.1.1 连续变量最优分段

定义自动分箱函数,单调分箱,是基于IV(Information Value)和WOE(Weight of Evidence)两个指标来进行的。

WOE是一种衡量某个分箱中好坏样本分布相对于总样本分布的指标。它通过对数转换来量化这种分布差异,使得WOE值能够直观地反映该分箱对于区分好坏样本的能力

IV则是基于WOE计算得出的一个汇总指标,用于衡量整个特征(经过分箱处理后)对于预测目标变量的信息量。IV值越高,说明该特征对于预测目标变量的贡献越大。

在单调分箱的过程中,会同时考虑WOE和IV两个指标。一方面,要确保分箱后的WOE值呈现单调性,这有助于保证模型的可解释性和单调性约束;另一方面,也要关注IV值,以评估分箱操作是否有效地提高了特征的预测能力。

def mono_bin(Y, X, n=10):r = 0good=Y.sum()bad=Y.count()-goodwhile np.abs(r) < 1: d1 = pd.DataFrame({"X": X, "Y": Y, "Bucket": pd.qcut(X, n)})d2 = d1.groupby('Bucket', as_index = True)r, p = stats.spearmanr(d2.mean().X, d2.mean().Y)  n = n - 1d3 = pd.DataFrame(d2.X.min(), columns = ['min'])d3['min']=d2.min().Xd3['max'] = d2.max().Xd3['sum'] = d2.sum().Yd3['total'] = d2.count().Yd3['rate'] = d2.mean().Yd3['woe']=np.log((d3['rate']/good)/((1-d3['rate'])/bad))d3['goodattribute']=d3['sum']/goodd3['badattribute']=(d3['total']-d3['sum'])/badiv=((d3['goodattribute']-d3['badattribute'])*d3['woe']).sum()d4 = (d3.sort_values(by='min')).reset_index(drop=True)# d4 = (d3.sort_index(by = 'min')).reset_index(drop=True)woe=list(d4['woe'].round(3))cut=[]cut.append(float('-inf'))for i in range(1,n+1):qua=X.quantile(i/(n+1))cut.append(round(qua,4))cut.append(float('inf'))return d4,iv,cut,woe

对于 RevolvingUtilizationOfUnsecuredLines、age、DebtRatio和MonthlyIncome使用这种方式进行分类。连续变量离散化,最优分段。

x1_d,x1_iv,x1_cut,x1_woe = mono_bin(train_y,train_X.RevolvingUtilizationOfUnsecuredLines,n=10)
x2_d,x2_iv,x2_cut,x2_woe = mono_bin(train_y,train_X.age,n=10)
x4_d,x4_iv,x4_cut,x4_woe = mono_bin(train_y,train_X.DebtRatio,n=20)
x5_d,x5_iv,x5_cut,x5_woe = mono_bin(train_y,train_X.MonthlyIncome,n=10)

查看分箱结果

# 打印RevolvingUtilizationOfUnsecuredLines的分箱结果  
print("RevolvingUtilizationOfUnsecuredLines分箱结果:")  
print("分布:\n", x1_d)  
print("信息价值:", x1_iv)  
print("分箱边界:", x1_cut)  
print("权重证据:", x1_woe) 

print("age分箱结果:")
print("分布:\n", x2_d)  
print("信息价值:", x2_iv)  
print("分箱边界:", x2_cut)  
print("权重证据:", x2_woe)

print("MonthlyIncome分箱结果:")
print("分布:\n", x5_d)  
print("信息价值:", x5_iv)  
print("分箱边界:", x5_cut)  
print("权重证据:", x5_woe)

3.1.2 不能最优分箱的变量

其他不能最优分箱的变量使用人工选择的方式进行,自定义分箱,同时计算WOE(Weight of Evidence)和 IV(Information Value)。

pinf = float('inf')  # 正无穷大
ninf = float('-inf') # 负无穷大
cutx3 = [ninf, 0, 1, 3, 5, pinf]
cutx6 = [ninf, 1, 2, 3, 5, pinf]
cutx7 = [ninf, 0, 1, 3, 5, pinf]
cutx8 = [ninf, 0,1,2, 3, pinf]
cutx9 = [ninf, 0, 1, 3, pinf]
cutx10 = [ninf, 0, 1, 2, 3, 5, pinf]

定义计算woe的函数

def woe_value(d1):d2 = d1.groupby('Bucket', as_index = True)good=train_y.sum()bad=train_y.count()-goodd3 = pd.DataFrame(d2.X.min(), columns = ['min'])d3['min']=d2.min().Xd3['max'] = d2.max().Xd3['sum'] = d2.sum().Yd3['total'] = d2.count().Yd3['rate'] = d2.mean().Yd3['woe'] = np.log((d3['rate']/good)/((1-d3['rate'])/bad))d3['goodattribute']=d3['sum']/goodd3['badattribute']=(d3['total']-d3['sum'])/badiv=((d3['goodattribute']-d3['badattribute'])*d3['woe']).sum()d4 = (d3.sort_values(by='min')).reset_index(drop=True)# d4 = (d3.sort_index(by = 'min')).reset_index(drop=True)woe=list(d4['woe'].round(3))return d4,iv,woe

创建一个新的DataFrame d1,根据列X(来自train_X的某个特征)的值将其分为不同的桶(Bucket),并计算每个桶的WOE(Weight of Evidence)值和相关统计信息。

3:NumberOftime30-59DaysPastDueNotNorse

# train_X['NumberOfTime30-59DaysPastDueNotWorse'] 是特征列  
# train_y 是目标列(好坏客户的标签)# 创建一个新的DataFrame,包含特征X和目标Y 
d1 = pd.DataFrame({"X": train_X['NumberOfTime30-59DaysPastDueNotWorse'], "Y": train_y})
# 简单地将X列的值复制到新列Bucket中
d1['Bucket'] = d1['X']
d1_x1 = d1.loc[(d1['Bucket']<=0)]
d1_x1.loc[:,'Bucket']="(-inf,0]"# 根据Bucket列的值创建了不同的子集
# 为每个子集的Bucket列设置了新的字符串值,这些值描述了每个子集的数值范围 
d1_x2 = d1.loc[(d1['Bucket']>0) & (d1['Bucket']<= 1)]
d1_x2.loc[:,'Bucket'] = "(0,1]"d1_x3 = d1.loc[(d1['Bucket']>1) & (d1['Bucket']<= 3)]
d1_x3.loc[:,'Bucket'] = "(1,3]"d1_x4 = d1.loc[(d1['Bucket']>3) & (d1['Bucket']<= 5)]
d1_x4.loc[:,'Bucket'] = "(3,5]"d1_x5 = d1.loc[(d1['Bucket']>5)]
d1_x5.loc[:,'Bucket']="(5,+inf)"
# 合并所有子集,将所有子集合并回一个DataFrame
d1 = pd.concat([d1_x1,d1_x2,d1_x3,d1_x4,d1_x5])# 调用了woe_value函数,并传入了合并后的DataFrame d1。
# 返回每个桶的WOE值(x3_woe)、信息价值(IV,x3_iv)和其他描述性统计信息(x3_d) 
x3_d,x3_iv,x3_woe= woe_value(d1)# 定义桶的边界
# 定义了一个列表,它描述了Bucket列的数值范围边界。这些边界与前面为子集设置的字符串值相对应
x3_cut = [float('-inf'),0,1,3,5,float('+inf')]

6:NumberOfOpenCreditLinesAndLoans

d1 = pd.DataFrame({"X": train_X['NumberOfOpenCreditLinesAndLoans'], "Y": train_y})
d1['Bucket'] = d1['X']
d1_x1 = d1.loc[(d1['Bucket']<=0)]
d1_x1.loc[:,'Bucket']="(-inf,0]"d1_x2 = d1.loc[(d1['Bucket']>0) & (d1['Bucket']<= 1)]
d1_x2.loc[:,'Bucket'] = "(0,1]"d1_x3 = d1.loc[(d1['Bucket']>1) & (d1['Bucket']<= 3)]
d1_x3.loc[:,'Bucket'] = "(1,3]"d1_x4 = d1.loc[(d1['Bucket']>3) & (d1['Bucket']<= 5)]
d1_x4.loc[:,'Bucket'] = "(3,5]"d1_x5 = d1.loc[(d1['Bucket']>5)]
d1_x5.loc[:,'Bucket']="(5,+inf)"
d1 = pd.concat([d1_x1,d1_x2,d1_x3,d1_x4,d1_x5])x6_d,x6_iv,x6_woe= woe_value(d1)
x6_cut = [float('-inf'),0,1,3,5,float('+inf')]

7:NumberOfTimes90DaysLate

8:NumberRealEstateLoansOrLines

9:NumberOfTime60-89DaysPastDueNotWorse

10:NumberOfDependents

3.1.3 检查变量之间相关性

corr = train_data.corr()
xticks = ['x0','x1','x2','x3','x4','x5','x6','x7','x8','x9','x10']
yticks = list(corr.index)
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
sns.heatmap(corr, annot=True, cmap='rainbow', ax=ax1, annot_kws={'size': 5,  'color': 'blue'})
ax1.set_xticklabels(xticks, rotation=0, fontsize=10)
ax1.set_yticklabels(yticks, rotation=0, fontsize=10)
plt.show()

可以看到 NumberOfTime30-59DaysPastDueNotWorse, NumberOfOpenCreditLinesAndLoans和NumberOfTime60-89DaysPastDueNotWorse这三个特征对于所要预测的值有较强的相关性。

3.2 查看各变量IV值

根据各变量的IV值来选择对数据处理有好效果的变量

# 查看各变量IV值
informationValue = []
informationValue.append(x1_iv)
informationValue.append(x2_iv)
informationValue.append(x3_iv)
informationValue.append(x4_iv)
informationValue.append(x5_iv)
informationValue.append(x6_iv)
informationValue.append(x7_iv)
informationValue.append(x8_iv)
informationValue.append(x9_iv)
informationValue.append(x10_iv)
informationValueindex=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10']
index_num = range(len(index))
ax=plt.bar(index_num,informationValue,tick_label=index)
plt.show()

通过IV值判断变量预测能力的标准是:

< 0.02: unpredictive

0.02 to 0.1: weak

0.1 to 0.3: medium

0.3 to 0.5: strong

> 0.5: suspicious

可以看到,对于X4,X5,X6,X8,以及X10而言,IV值都比较低,因此可以舍弃这些预测能力较差的特征。

查看分箱结果

4 模型分析

4.1 WOE转换

将所有的需要的特征woe化,并将不需要的特征舍弃,仅保留WOE转码后的变量

def trans_woe(var,var_name,x_woe,x_cut):woe_name = var_name + '_woe'for i in range(len(x_woe)):if i == 0:var.loc[(var[var_name]<=x_cut[i+1]),woe_name] = x_woe[i]elif (i>0) and (i<= len(x_woe)-2):var.loc[((var[var_name]>x_cut[i])&(var[var_name]<=x_cut[i+1])),woe_name] = x_woe[i]else:var.loc[(var[var_name]>x_cut[len(x_woe)-1]),woe_name] = x_woe[len(x_woe)-1]return varx1_name = 'RevolvingUtilizationOfUnsecuredLines'
x2_name = 'age'
x3_name = 'NumberOfTime30-59DaysPastDueNotWorse'
x7_name = 'NumberOfTimes90DaysLate'
x9_name = 'NumberOfTime60-89DaysPastDueNotWorse'train_X = trans_woe(train_X,x1_name,x1_woe,x1_cut)
train_X = trans_woe(train_X,x2_name,x2_woe,x2_cut)
train_X = trans_woe(train_X,x3_name,x3_woe,x3_cut)
train_X = trans_woe(train_X,x7_name,x7_woe,x7_cut)
train_X = trans_woe(train_X,x9_name,x9_woe,x9_cut)

查看 train_X DataFrame 的最后五列

train_X = train_X.iloc[:,-5:]
print(train_X)

4.2 模型建立

调用STATSMODEL包来建立逻辑回归模型

# 调用STATSMODEL包来建立逻辑回归模型
import statsmodels.api as sm# 添加常数项。逻辑回归模型需要一个常数项(通常称为截距)来估计回归方程
X1 = sm.add_constant(train_X)# 使用train_y(训练数据的标签)和X1(带有常数项的特征矩阵)来创建一个逻辑回归模型实例
logit = sm.Logit(train_y,X1)# 拟合模型
# fit()方法执行了最大似然估计来估计模型的参数(包括截距和系数)
result = logit.fit()# 打印出模型的摘要,包括每个系数的估计值、标准误差、z值、p值以及模型的R-squared值、对数似然值等信息
print(result.summary())

 记住这个coe每个系数的估计值,后面要用到

4.2 模型检验

模型建立后,导入测试集的数据,画出ROC曲线判断模型的准确性

4.2.1 对测试集进行woe转化

test_X = trans_woe(test_X,x1_name,x1_woe,x1_cut)
test_X = trans_woe(test_X,x2_name,x2_woe,x2_cut)
test_X = trans_woe(test_X,x3_name,x3_woe,x3_cut)
test_X = trans_woe(test_X,x7_name,x7_woe,x7_cut)
test_X = trans_woe(test_X,x9_name,x9_woe,x9_cut)test_X = test_X.iloc[:,-5:]
print(test_X)

4.2.2 拟合模型,画出ROC曲线得到AUC值

通过ROC曲线和AUC值来评估模型的似合能力

sklearn.metrics自动计算ROC和AUC

# 拟合模型,画ROC曲线,得AUC值
from sklearn import metrics
X3 = sm.add_constant(test_X)
resu = result.predict(X3)
fpr, tpr, threshold = metrics.roc_curve(test_y, resu)
rocauc = metrics.auc(fpr, tpr)
plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % rocauc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('TPR')
plt.xlabel('FPR')
plt.show()

可以看到,AUC=0.85,是可以接受的。

5 建立评分卡

完成了建模相关的工作,并用ROC曲线验证了模型的预测能力

将Logistic模型转换为标准评分卡的形式

5.1 评分标准

依据资料:

a=log(p_good/P_bad)

Score = offset + factor * log(odds)

在建立标准评分卡之前,需要选取几个评分卡参数:基础分值、 PDO(比率翻倍的分值)和好坏比。 这里,取600分为基础分值,PDO为20 (每高20分好坏比翻一倍),好坏比取20。

5.2 计算分数

# 定义 p 和 q  
p = 20 / np.log(2)  
q = 600 - 20 * np.log(20) / np.log(2)  # 定义 get_score 函数  
def get_score(coe, woe, factor):  scores = []  for w in woe:  score = round(coe * w * factor, 0)  scores.append(score)  return scores  # 定义 x_coe 列表  
x_coe = [2.6084, 0.6327, 0.5151, 0.5520, 0.5747, 0.4074]  # 计算基础分数 baseScore  
baseScore = round(q + p * x_coe[0], 0) 

x_coe是之前逻辑回归模型得到的系数。

最后BaseScore等于589分。

计算各项分数

x1_score = get_score(x_coe[1], x1_woe, p)
x2_score = get_score(x_coe[2], x2_woe, p)
x3_score = get_score(x_coe[3], x3_woe, p)
x7_score = get_score(x_coe[4], x7_woe, p)
x9_score = get_score(x_coe[5], x9_woe, p)

5.3 建立评分卡

根据前面的分箱结果和得到的分数,建立评分卡

score = [[23.0, 22.0, 5.0, -20.0],
[-8.0, -6.0, -4.0, -3.0, -1.0, 3.0, 7.0, 14.0, 17.0],
[8.0, -14.0, -28.0, -38.0, -43.0],
[6.0, -33.0, -46.0, -53.0, -51.0],
[3.0, -22.0, -32.0, -35.0, -31.0]]

 

5.4 自动计算评分

建立一个函数,使得当输入x1,x2,x3,x7,x9的值时可以返回评分数

cut_t = [x1_cut,x2_cut,x3_cut,x7_cut,x9_cut]
# x为数组,包含x1,x2,x3,x7和x9的取值
def compute_score(x):        tot_score = baseScorecut_d = copy.deepcopy(cut_t)for j in range(len(cut_d)):cut_d[j].append(x[j])cut_d[j].sort()for i in range(len(cut_d[j])):if cut_d[j][i] == x[j]:tot_score = score[j][i-1] +tot_scorereturn tot_score

测试一下

基于python制作的信用评分卡就此完成!


http://www.mrgr.cn/p/41360641

相关文章

周末玩一下云技术,kvm 相关笔记

由于需要将企业的很贵的显卡和主机装在一个虚拟主机,用来跑 ue5 和 sd3 用来给用户临时使用,但是怎么将主机虚拟出来成多个主机呢,自己没有有钱请不起人,只能自己学一下虚拟化技术,第一步主机开启硬件支持 , grep -E vmx|svm /proc/cpuinfo 命令的功能是在/proc/cpuinf…

OSPF的协议特性

路由汇总的概念 l 路由汇总&#xff08; Route Aggregation &#xff09;&#xff0c;又称路由聚合&#xff08;Route Summarization&#xff09;&#xff0c;指的是把一组明细路由汇聚成一条汇总路由条目的操作 l 路由汇总能够减少路由条目数量、减小路由表规模&#xff0…

跳出框架:Facebook的创新策略与社交影响

1. 引言 在数字化时代&#xff0c;社交媒体如同一面镜子&#xff0c;反映出我们社会的多元性和变革。Facebook&#xff0c;作为这面镜子中最明亮的一个&#xff0c;不仅改变了人们的日常生活&#xff0c;更深刻地塑造了社交、文化和经济的面貌。本文将深入探讨Facebook的创新策…

RabbitMQ(高级)笔记

一、生产者可靠性 &#xff08;1&#xff09;生产者重连&#xff08;不建议使用&#xff09; logging:pattern:dateformat: MM-dd HH:mm:ss:SSSspring:rabbitmq:virtual-host: /hamllport: 5672host: 192.168.92.136username: hmallpassword: 123listener:simple:prefetch: 1c…

Ubuntu16.04搭建webrtc服务器

本人查阅无数资料,历时3周搭建成功 一、服务器组成 AppRTC 房间+Web服务器 https://github.com/webrtc/apprtcCollider 信令服务器,在AppRTC源码里CoTurn coturn打洞+中继服务器 Nginx 服务器,用于Web访问代理和Websocket代理。AppRTC 房间+Web服务器使用python+js语言 App…

235 基于matlab的时频盲源分离(TFBSS)算法

基于matlab的时频盲源分离&#xff08;TFBSS&#xff09;算法&#xff0c;TFBSS用空间频率分布来分离非平稳信号&#xff0c;可以分离具有不同时频分布的源信号&#xff0c;也能够分离具有相同谱密度但时频分布不同的高斯源。同时&#xff0c;该算法在时频域上局域化源信号能量…

玩转MongoDB 从入门到实战 pdf mongodb从入门到商业实战pdf下载

玩转MongoDB 从入门到实战 pdf mongodb从入门到商业实战pdf下载 转载huatechinfo2023-09-14 20:28:05 文章标签mongodb数据库数据文章分类MongoDB数据库阅读数277目录MongoDB 数据库介绍01、MongoDB简介1、性能高 2、支持分布式 3、安装和部署容易 4、便于开发 5、NOSQL与SQL…

CPPTest实例分析(C++ Test)

1 概述 CppTest是一个可移植、功能强大但简单的单元测试框架&#xff0c;用于处理C中的自动化测试。重点在于可用性和可扩展性。支持多种输出格式&#xff0c;并且可以轻松添加新的输出格式。 CppTest下载地址&#xff1a;下载地址1  下载地址2 下面结合实例分析下CppTest如…

git 基础知识(全能版)

文章目录 一 、git 有三个分区二、git 基本操作1、克隆—git clone2、拉取—git fetch / git pull3、查看—git status / git diff3.1 多人开发代码暂存技巧 本地代码4、提交—git add / git commit / git push5、日志—git log / git reflog6、删除—git rm ‘name’7、撤销恢…

vue-解决background-image:url不显示问题

如上图所示,需求是给网页设置背景图,但实际效果是图片无法显示,已经确认地址是没问题的,网上教程有些是让在路径作为参数包裹在require方法里面,但还是未起作用。 折腾许久之后,发现了解决办法,只需要给div设置高度即可<style> .background {height: 120vh; } <…

数据结构与算法解题-20240426

这里写目录标题 面试题 08.04. 幂集367. 有效的完全平方数192. 统计词频747. 至少是其他数字两倍的最大数718. 最长重复子数组 面试题 08.04. 幂集 中等 幂集。编写一种方法&#xff0c;返回某集合的所有子集。集合中不包含重复的元素。 说明&#xff1a;解集不能包含重复的子…

CSS基础语法

CSS 标签选择器 内嵌式改变标签样式 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title></title><!-- 属于标签选择器 --><style>p{font - size: 16px;color: red;}</style></head><bo…

Angular创建项目

Angular创建项目 文章目录 Angular创建项目1. 创建项目1.1 直接安装1.2 跳过npm i安装 2. 运行程序 1. 创建项目 ng new 项目名称 1.1 直接安装 ng new angulardemo --同时会安装依赖包&#xff0c;执行的命令就是npm i 1.2 跳过npm i安装 ng new angulardemo --skip-inst…

dotnet 8 版本与银河麒麟V10和UOS系统的 glibc 兼容性

刚刚好 dotnet 8 的 glibc 版本足够旧,可以运行本文记录于 2024.04.26 如果你阅读本文时间距离本文记录时间过远,可能本文记录的信息已失效 dotnet 根据 dotnet 的 supported-os 文档记录,当前的 dotnet 8 是 8.0.4 版本,官方说明是支持 Debian 11 及以上版本 实际测试可以…

从零入门区块链和比特币(第一期)

欢迎来到我的区块链与比特币入门指南&#xff01;如果你对区块链和比特币感兴趣&#xff0c;但不知道从何开始&#xff0c;那么你来对地方了。本博客将为你提供一个简明扼要的介绍&#xff0c;帮助你了解这个领域的基础知识&#xff0c;并引导你进一步探索这个激动人心的领域。…

U盘格式转换GPT格式转回DOS

当前格式 fdisk /dev/sdb# 在 fdisk 提示符下&#xff0c;输入以下命令删除分区&#xff1a; d # 选择要删除的分区编号&#xff08;如 1、2 等&#xff09; w开始转换 [rootnode-24 ~]# fdisk /dev/sdbWelcome to fdisk (util-linux 2.37.4). Changes will remain in memory o…

RabbitMQ发布确认和消息回退(6)

概念 发布确认原理 生产者将信道设置成 confirm 模式&#xff0c;一旦信道进入 confirm 模式&#xff0c;所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始)&#xff0c;一旦消息被投递到所有匹配的队列之后&#xff0c;broker就会发送一个确认给生产者(包含消…

第一个大型汽车ITU-T车载语音通话质量实验室投入使用

中国汽车行业蓬勃发展&#xff0c;尤其是新能源汽车风起云涌&#xff0c;无论是国内还是海外需求旺盛的趋势下&#xff0c;除乘用车等紧凑型车外&#xff0c;中型汽车如MPV、小巴、小型物流车&#xff0c;大型汽车如重卡、泥头车等亦加入了手机互联、智驾的科技行列&#xff0c…

LT9611UXC双端口 MIPI DSI/CSI 转 HDMI2.0,带音频

1. 说明 LT9611UXC 是一款高性能 MIPI DSI/CSI 至 HDMI2.0 转换器。MIPI DSI/CSI 输入具有可配置的单端口或双端口&#xff0c;具有 1 个高速时钟通道和 1~4 个高速数据通道&#xff0c;工作速率最高为 2Gbps/通道&#xff0c;可支持高达 16Gbps 的总带宽。 LT9611UXC 支持突发…

四:物联网ARM开发

一&#xff1a;ARM体系结构概述 1&#xff1a;控制外设led灯还有一些按键这些就要用到gpio&#xff0c;采集传感器的数据需要adc进行转化数据格式&#xff0c;特殊的外设和传感器是通过特殊的协议接口去进行连接的比如一些轴传感器和主控器的连接是通过spi&#xff0c;IIC 控制…