数据科学、统计学、商业分析

news/2024/5/25 3:22:45

数据科学、统计学、商业分析是在各方面有着不同的侧重和方向的领域。

 1.专业技能

数据科学(Data Science):数据科学涉及从大量数据中提取有价值的信息、模式和洞察力的领域。它使用多种技术和领域知识,如统计学、机器学习、数据库管理、数据可视化等,进行数据清洗、探索性数据分析、预测建模和数据可视化等工作。数据科学强调对大规模、复杂数据的处理和分析,以生成对业务决策具有实际价值的结果。

统计学(Statistics):统计学是一门研究数据收集、整理、处理和解释的学科。统计学使用统计方法和技术来概括、分析和推断数据中的模式和规律。它主要关注数据的采样和推断,以验证假设、进行置信度分析和决策制定。统计学方法旨在解释和理解现象背后的原理,提供对数据和随机性的定量描述。

商业分析(Business Analytics):商业分析是指在商业环境中,使用数据和分析方法来解决商业问题、制定战略和改进业务绩效。与数据科学和统计学不同,商业分析更侧重应用在组织和市场层面上,重点是利用数据为企业提供洞察力、支持决策和改进业务运营。商业分析的方法包括数据挖掘、预测建模、市场分析和绩效评估等。

2.工作内容

数据科学:运用数据挖掘发现数据集中的机会,编写机器学习算法来支持决策制定,为解决业务问题创建分析基础。

统计学:搜集数据,用统计的方法来分析数据,并且进行统计推断。

商业分析:通过多方面数据分析中的业务洞察力转换成有形资源,并将统计分析转换成数据驱动商业的智能,改善经营业绩。

3.就业方向

数据科学:从事大数据管理、研究、应用开发等方面的工作。

统计学:互联网/IT,传统生产,金融行业

商业分析:互联网行业、金融行业、咨询行业、市场营销行业

4.工作岗位

数据科学:机器学习工程师、数据分析员、数据科学家

统计学:金融类(风控、精算)、大数据类(数据挖掘、数据库管理与开发等)

商业分析:互联网(算法、数据挖掘、数据分析、运营)、金融(投资、信用风险)、咨询(分析数据)、市场营销(市场分析、用户分析)


http://www.mrgr.cn/p/40257346

相关文章

【SQL应知应会】表分区(二)• Oracle版

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习,有基础也有进阶,有MySQL也有Oracle 分区表 • Oracle版 前言一、分区表1.什么是表分区…

Oracle 迁移 Hive 过程中遇到的问题总结

前言 最近一个小伙伴在做从 Oracle 到 Hive 的业务迁移工作,在迁移过程中属实遇到了一些坑,今天就来汇总一下这些坑,避免以后大家其他业务迁移的时候再出现类似的问题,即使出现了也可以拿过来进行对照解决。 问题1:Distinct window functions are not supported: count(…

Python案例分析|使用Python图像处理库Pillow处理图像文件

本案例通过使用Python图像处理库Pillow,帮助大家进一步了解Python的基本概念:模块、对象、方法和函数的使用 使用Python语言解决实际问题时,往往需要使用由第三方开发的开源Python软件库。 本案例使用图像处理库Pillow中的模块、对象来处理…

uniapp小程序,根据小程序的环境版本,控制的显页面功能按钮的示隐藏

需求:根据小程序环境控制控制页面某个功能按钮的显示隐藏; 下面是官方文档和功能实现的相关代码: 实现上面需要,用到了uni.getAccountInfoSync(): uni.getAccountInfoSync() 是一个 Uniapp 提供的同步方法&#xff0c…

微服务如何治理

微服务远程调用可能有如下问题: 注册中心宕机; 服务提供者B有节点宕机; 服务消费者A和注册中心之间的网络不通; 服务提供者B和注册中心之间的网络不通; 服务消费者A和服务提供者B之间的网络不通; 服务提供者…

操作系统_进程与线程(三)

目录 3. 同步与互斥 3.1 同步与互斥的基本概念 3.1.1 临界资源 3.1.2 同步 3.1.3 互斥 3.2 实现临界区互斥的基本方法 3.2.1 软件实现方法 3.2.1.1 算法一:单标志法 3.2.1.2 算法二:双标志法先检查 3.2.1.3 算法三:双标志法后检查 …

mysql的json处理

写在前面 需要注意,5.7以上版本才支持,但如果是生产环境需要使用的话,尽量使用8.0版本,因为8.0版本对json处理做了比较大的性能优化。你你可以使用select version();来查看版本信息。 本文看下MySQL的json处理。在正式开始让我们先…

使用GGML和LangChain在CPU上运行量化的llama2

Meta AI 在本周二发布了最新一代开源大模型 Llama 2。对比于今年 2 月发布的 Llama 1,训练所用的 token 翻了一倍,已经达到了 2 万亿,对于使用大模型最重要的上下文长度限制,Llama 2 也翻了一倍。 在本文,我们将紧跟趋…

AI聊天GPT三步上篮!

1、是什么? CHATGPT是OpenAI开发的基于GPT(Generative Pre-trained Transformer)架构的聊天型人工智能模型。也就是你问它答,根据网络抓去训练 2、怎么用? 清晰表达自己诉求,因为它就是一个AI助手&#…

Eclipse memory analyzer 分析GC dump日志定位代码问题

1、问题描述: 使用命令 jstat -gcutil [pid] 查看JVM GC日志,发现生产系统频繁FullGC,大概几分钟一次,而且系统响应速度变慢很多 再使用 free -g 查看服务器内存全部占用,猜测是内存溢出了 2、导出dump日志 jmap -du…

【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:零基础快速入门人工智能《机器学习入门到精通》 K-近邻算法 1、什么是K-近邻算法?2、K-近邻算法API3、…

centos7安装mysql数据库详细教程及常见问题解决

mysql数据库详细安装步骤 1.在root身份下输入执行命令: yum -y update 2.检查是否已经安装MySQL,输入以下命令并执行: mysql -v 如出现-bash: mysql: command not found 则说明没有安装mysql 也可以输入rpm -qa | grep -i mysql 查看是否已…

Unity XML3——XML序列化

一、XML 序列化 ​ 序列化:把对象转化为可传输的字节序列过程称为序列化,就是把想要存储的内容转换为字节序列用于存储或传递 ​ 反序列化:把字节序列还原为对象的过程称为反序列化,就是把存储或收到的字节序列信息解析读取出来…

java+springboot+mysql疫情物资管理系统

项目介绍: 使用javaspringbootmysql开发的疫情物资管理系统,系统包含超级管理员,系统管理员、员工角色,功能如下: 超级管理员:管理员管理;部门管理;职位管理;员工管理&…

zore-shot,迁移学习和多模态学习

1.zore-shot 定义:在ZSL中,某一类别在训练样本中未出现,但是我们知道这个类别的特征,然后通过语料知识库,便可以将这个类别识别出来。概括来说,就是已知描述,对未知类别(未在训练集中…

Python 教程之标准库概览

概要 Python 标准库非常庞大,所提供的组件涉及范围十分广泛,使用标准库我们可以让您轻松地完成各种任务。 以下是一些 Python3 标准库中的模块: 「os 模块」 os 模块提供了许多与操作系统交互的函数,例如创建、移动和删除文件和…

Debeizum 增量快照

在Debeizum1.6版本发布之后,成功推出了Incremental Snapshot(增量快照)的功能,同时取代了原有的实验性的Parallel Snapshot(并行快照)。在本篇博客中,我将介绍全新快照方式的原理,以…

系统架构设计师-软件架构设计(5)

目录 一、构件与中间件技术 1、软件复用 2、构件与中间件技术的概念 3、构件的复用 3.1 检索与提取构件 3.2 理解与评价构件 3.3 修改构件 3.4 组装构件 4、中间件 4.1 采用中间件技术的优点: 4.2 中间件的分类: 5、构件标准 5.1 CORBA(公共…

day43-Feedback Ui Design(反馈ui设计)

50 天学习 50 个项目 - HTMLCSS and JavaScript day43-Feedback Ui Design&#xff08;反馈ui设计&#xff09; 效果 index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport&q…

CPU密集型和IO密集型任务的权衡:如何找到最佳平衡点

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、CPU密集型与IO密集型3.1、CPU密集型3.2、I/O密…