C++王牌结构hash:哈希表闭散列的实现与应用

news/2024/5/15 3:56:04

一、哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素 时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log n),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。

如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

此时想要实现这样一个结构就需要考虑两步:

1、插入数据

根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。

2、搜索数据

对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。

该方式即为哈希方法/散列方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)。

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity;

capacity为存储元素底层空间总的大小。

df7f296867e24dc6ae824d2410df6576.png

 用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。

可是此时出现一个问题,目前插入的数据大小都<capacity,假设此时按照上述哈希方式,向集合中插入元素44,会出现什么问题?

此时我们会发现,44%10=4,可是下标为4的位置上已经有一个数了,此时就产生了冲突,我们也将其称为哈希冲突。

二、哈希冲突

2.1什么是哈希冲突

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突哈希碰撞

通常把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

2.2哈希函数与哈希冲突

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则

1.哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间。

2.哈希函数计算出来的地址能均匀分布在整个空间中。

3.哈希函数应该比较简单。

2.2.1常见哈希函数

1.直接定址法--(常用)

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B

优点:简单、均匀。

缺点:需要事先知道关键字的分布情况。

使用场景:适合查找比较小且连续的情况。

2.除留余数法--(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数, 按照哈希函数:Hash(key) = key% p(p将关键码转换成哈希地址。

3. 平方取中法--(了解)

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;

再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址。

平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况。

4. 折叠法--(了解)

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。

折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况。

5. 随机数法--(了解)

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中 random为随机数函数。

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

三、闭散列解决哈希冲突

解决哈希冲突两种常见的方法是:闭散列和开散列。

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有 空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

1. 线性探测

比还拿上图中的场景举例,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4, 因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入

通过哈希函数获取待插入元素在哈希表中的位置。如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素。

f600a765c902481599c1dac6be33d8c4.png

 删除:

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

 查找:

查找位置为i=key%表的大小,和插入一样,如果i位置不是要查找的值就继续往后查找,直到找到该值或者遇到空,如果遇到表尾的位置,要往表头回绕。

扩容机制:

aff9c946462f44599d8ecee25e016434.png

3.1代码实现闭散列线性探测

#pragma once
#include<iostream>
using namespace std;
#include<vector>namespace open_address
{template<class K>struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};// 特化template<>struct HashFunc<string>{size_t operator()(const string& s){size_t hash = 0;for (auto e : s){hash += e;hash *= 131;}return hash;}};enum State{EMPTY,EXIST,DELETE};template<class K, class V>struct Hashtable_node{pair<K, V> _kv;State _state = EMPTY;//标记为空};template<class K, class V, class Hash = HashFunc<K>>class HashTable{typedef Hashtable_node<K, V> Node;public:HashTable(size_t size = 10){_tables.resize(size);}Node* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();while (_tables[hashi]._state != EMPTY){if (key == _tables[hashi]._kv.first&& _tables[hashi]._state == EXIST){return &_tables[hashi];}++hashi;hashi %= _tables.size();}return nullptr;}bool insert(const pair<K, V>& kv){if (Find(kv.first))return false;//判断是否需要扩容if (_n * 10 / _tables.size() >= 7){HashTable<K, V, Hash> newHT(_tables.size() * 2);for (auto& e : _tables){if (e._state == EXIST){newHT.insert(e._kv);}}_tables.swap(newHT._tables);}Hash hs;//线性探测去找位置size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){++hashi;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;++_n;return true;}bool Erase(const K& key){Node* ret = Find(key);if (ret){_n--;ret->_state = DELETE;return true;}else{return false;}}private:vector<Node> _tables;size_t _n = 0;};}

3.2线性探测优缺点分析

线性探测优点:实现非常简单,计算出坐标后就去存放,如果该位置有值就挨着往后放。

线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位 置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法 为:$H_i$ = ($H_0$ + $i^2$ )% m, 或者:$H_i$ = ($H_0$ - $i^2$ )% m。其中:i = 1,2,3…, $H_0$是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表 的大小。

对于2.1中如果要插入44,产生冲突,使用解决后的情况为:

304efa436a304013a0c43b993554501f.png

研究表明: 当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

http://www.mrgr.cn/p/31263766

相关文章

Unity AI Navigation自动寻路

目录 前言一、Unity中AI Navigation是什么&#xff1f;二、使用步骤1.安装AI Navigation2.创建模型和材质3.编写向目标移动的脚本4.NavMeshLink桥接组件5.NavMeshObstacle组件6.NavMeshModifler组件 三、效果总结 前言 Unity是一款强大的游戏开发引擎&#xff0c;而人工智能&a…

TCP三次握手、四次挥手出现意外情况时,如何保证稳定可靠?

TCP 作为一个靠谱的协议,在传输数据的前后,需要在双端之间建立连接,并在双端各自维护连接的状态。TCP 并没有什么特别之处,在面对多变的网络情况,也只能通过不断的重传和各种算法来保证可靠性。建立连接前,TCP 会通过三次握手来保证双端状态正确,然后就可以正常传输数据…

八大技术趋势案例(人工智能物联网)

科技巨变,未来已来,八大技术趋势引领数字化时代。信息技术的迅猛发展,深刻改变了我们的生活、工作和生产方式。人工智能、物联网、云计算、大数据、虚拟现实、增强现实、区块链、量子计算等新兴技术在各行各业得到广泛应用,为各个领域带来了新的活力和变革。 为了更好地了解…

手机可以搜索到wifi,但电脑搜索不到WiFi无线网络的解决方法

手机可以搜索到wifi,但电脑搜索不到WiFi无线网络的解决方法:(重点先尝试一下后面的 原因二) 手机可以搜索到wifi,但电脑搜索不到WiFi无线网络的解决方法 一般来说,手机如果可以搜索到路由器Wi-Fi无线信号,并且可以连上上网,说明路由器自身和设置肯定是没有任何问题的,这…

数据可视化-ECharts Html项目实战(7)

在之前的文章中&#xff0c;我们学习了如何设置漏斗图、仪表盘。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢 数据可视化-ECharts Html项目实战&#xff08;6…

学习JavaEE的日子 Day32 线程池

Day32 线程池 1.引入 一个线程完成一项任务所需时间为&#xff1a; 创建线程时间 - Time1线程中执行任务的时间 - Time2销毁线程时间 - Time3 2.为什么需要线程池(重要) 线程池技术正是关注如何缩短或调整Time1和Time3的时间&#xff0c;从而提高程序的性能。项目中可以把Time…

DataX-Oracle新增writeMode支持update

目录 前言 第一步下载源码 第二步修改源码 1、Oraclewriter 2、WriterUtil 2.1、修改getWriteTemplate方法 2.2、新增onMergeIntoDoString与getStrings方法 3、CommonRdbmsWriter 3.1、修改startWriteWithConnection 3.2、修改doBatchInsert 3.3、修改fillPreparedStatem…

Flutter 拦截系统键盘,显示自定义键盘

一、这里记录下在开发过程中&#xff0c;下单的时候输入金额需要使用自定义的数字键盘 参考链接: https://juejin.cn/post/7166046328609308685 效果图 二、屏蔽系统键盘 怎样才能够在输入框获取焦点的时候&#xff0c;不让系统键盘弹出呢&#xff1f;同时又显示我们自定义的…

【SpringBoot从入门到精通】01_SpringBoot概述

一、Spring与SpringBoot 1.1 Spring Spring 是一款目前主流的 Java EE 轻量级开源框架&#xff0c;是 Java 世界最为成功的框架之一。Spring 由“Spring 之父”Rod Johnson(罗宾约翰逊) 提出并创立&#xff0c;其目的是用于简化 Java 企业级应用的开发难度和开发周期。 广义…

新网站收录时间是多久,新建网站多久被百度收录

对于新建的网站而言&#xff0c;被搜索引擎收录是非常重要的一步&#xff0c;它标志着网站的正式上线和对外开放。然而&#xff0c;新网站被搜索引擎收录需要一定的时间&#xff0c;而且时间长短受多种因素影响。本文将探讨新网站收录需要多长时间&#xff0c;以及新建网站多久…

Prometheus +Grafana +node_exporter可视化监控Linux + windows虚机

1、介绍 待补充 2、架构图 Prometheus &#xff1a;主要是负责存储、抓取、聚合、查询方面。 node_exporter &#xff1a;主要是负责采集物理机、中间件的信息。 3、搭建过程 配置要求&#xff1a;1台主服务器 n台从服务器 &#xff08;被监控的linux或windows虚机&am…

【分布式】——CAPBASE理论

CAP&BASE理论 ⭐⭐⭐⭐⭐⭐ Github主页&#x1f449;https://github.com/A-BigTree 笔记链接&#x1f449;https://github.com/A-BigTree/tree-learning-notes ⭐⭐⭐⭐⭐⭐ Spring专栏&#x1f449;https://blog.csdn.net/weixin_53580595/category_12279588.html Sprin…

数仓 - [04] 数仓分层

数仓分层是一种将数据仓库按照不同的层级进行组织和管理的方法。每个层级具有不同的功能和目的,旨在支持数据分析、报告和决策等不同的业务需求。一、数仓分层的意义和目的数仓分层的主要目的是实现数据的高效访问和分析,提高数据的可用性和性能,同时提供更好的灵活性和可扩…

TheMoon 恶意软件短时间感染 6,000 台华硕路由器以获取代理服务

文章目录 针对华硕路由器Faceless代理服务预防措施 一种名为"TheMoon"的新变种恶意软件僵尸网络已经被发现正在侵入全球88个国家数千台过时的小型办公室与家庭办公室(SOHO)路由器以及物联网设备。 "TheMoon"与“Faceless”代理服务有关联&#xff0c;该服务…

Hybrid-PSC:基于对比学习的混合网络,解决长尾图片分类 | CVPR 2021

论文提出新颖的混合网络用于解决长尾图片分类问题,该网络由用于图像特征学习的对比学习分支和用于分类器学习的交叉熵分支组成,在训练过程逐步将训练权重调整至分类器学习,达到更好的特征得出更好的分类器的思想。另外,为了节省内存消耗,论文提出原型有监督对比学习。从实…

axios发送get请求但参数中有数组导致请求路径多出了“[]“的处理办法

一、情况 使用axios发送get请求携带了数组参数时&#xff0c;请求路径中就会多出[]字符&#xff0c;而在后端也会报错 二、解决办法 1、安装qs 当前项目的命令行中安装 npm install qs2、引入qs库(使用qs库来将参数对象转换为字符串) // 全局 import qs from qs Vue.proto…

STM32使用USART发送数据包指令点亮板载LED灯

电路连接&#xff1a; 连接显示屏模块&#xff0c;显示屏的SCL在B10&#xff0c;SDA在B11。 程序目的&#xff1a; 发送LED_ON指令打开板载LED灯&#xff0c;发送LED_OFF关闭板载LED灯&#xff0c;与上一个博客不同&#xff0c;这个实际上是实现串口收发文本数据包。 …

使用DBever连接人大金仓数据库

下载安装DBever首先需要下载并安装DBever,可以在DBever官网上下载最新版的安装程序,根据提示进行安装即可。 打开人大金仓数据库服务 在连接人大金仓数据库之前,需要确保人大金仓数据库服务已经启动。可以在服务列表中找到人大金仓数据库服务,并启动它。使用DBever连接人大…

【数据库】postgresql截取最后一个字符之前的所有字符,如V1.0.0.20230731110947中取V1.0.0

在PostgreSQL中,我们可以使用position函数和split_part函数来截取最后一个.之前的所有字符。这两个函数都非常有用,尤其是在处理文本数据时。 position函数 position函数用于查找一个字符串中某个子串的位置。它的语法如下: POSITION(substring IN string)其中,substring是…

DER编码

一、任务详情参考附件中图书p120 中7.1的实验指导,完成DER编码 Name实例中,countryName改为“CN”,organization Name-"你的学号" commoaName="你的姓名拼音" 用echo -n -e "编码" > 你的学号.der中,用OpenSSL asn1parse 分析编码的正确性…