当前位置: 首页 > news >正文

LeetCode Hot100 刷题笔记(8)—— 动态规划(一维、二维)

目录

前言

一、动态规划

1. 爬楼梯

2. 杨辉三角

3. 打家劫舍

4. 完全平方数

5. 零钱兑换

6. 单词拆分

7. 最长递增子序列

8. 乘积最大子数组

9. 分割等和子集

10. 最长有效括号

二、多维动态规划

11. 不同路径

12. 最小路径和

13. 最长回文子串

14. 最长公共子序列

15. 编辑距离


前言

一、动态规划:爬楼梯,杨辉三角,打家劫舍,完全平方数,零钱兑换,单词拆分,最长递增子序列,乘积最大子数组,分割等和子集,最长有效括号。

二、多维动态规划:不同路径,最小路径和,最长回文子串,最长公共子序列,编辑距离。

*** Trick

动态规划步骤:1. 确定初始状态;2. 确定边界条件;3. 确定状态转移方程。

*** 常考:0-1背包问题(对应题目:9、14、15)

class Solution(object):def canPartition(self, nums):# 0-1背包问题sums = sum(nums)if sums % 2 != 0:return Falsetarget = sums // 2n = len(nums)dp = [[False] * (target+1) for _ in range(n)]dp[0][0] = Truefor i in range(1, n):dp[i][0] = Truefor j in range(1, target+1):dp[0][j] = Falsefor i in range(1, n):for j in range(1, target+1):if j >= nums[i]:dp[i][j] = dp[i-1][j] or dp[i-1][j-nums[i]]else:dp[i][j] = dp[i-1][j]return dp[n-1][target]

一、动态规划

1. 爬楼梯

原题链接:70. 爬楼梯 - 力扣(LeetCode)

# 1. 初始状态:爬到第1阶、第2届台阶的方法分别有1、2种
# 2. 确定边界条件
# 3. 动态转移方程:s(n) = s(n-1) + s(n-2)
class Solution(object):def climbStairs(self, n):s = [1, 2]   if n <=2:return s[n-1]else:for i in range(2, n):s.append(s[-1]+s[-2])return s[-1]

2. 杨辉三角

原题链接:118. 杨辉三角 - 力扣(LeetCode)

# 1. 初始状态:dp = [[1] * i for i in range(1, numRows+1)]
# 2. 边界条件:2<=i<numRows, 1<=j<numRows-2
# 3. 动态转移方程:dp[i][j] = dp[i][j-1] + dp[i][j]
class Solution(object):def generate(self, numRows):dp = [[1]*i for i in range(1, numRows+1)]if i<2:return dpfor i in range(2, numRows):for j in range(1, i):dp[i][j] = dp[i-1][j-1] + dp[i-1][j]return dp

3. 打家劫舍

原题链接:198. 打家劫舍 - 力扣(LeetCode)

class Solution(object):def rob(self, nums):nums.insert(0, 0)nums.insert(1, 0)dp = [0 for i in range(len(nums))]for i in range(2, len(nums)):dp[i] = max(dp[i-1], dp[i-2]+nums[i])return dp[-1]

4. 完全平方数

原题链接:279. 完全平方数 - 力扣(LeetCode)

# 1. 初始状态:dp = [i for i in range(n+1)]
# 2. 边界条件: wihle i-j*j >=0
# 3. 动态转移方程:dp[i] = min(dp[i-j*j]+1, dp[i])
class Solution(object):def numSquares(self, n):dp = [i for i in range(n+1)]for i in range(1, n+1):j = 1while i-j*j >= 0:dp[i] = min(dp[i-j*j]+1, dp[i])j+=1return dp[-1]

5. 零钱兑换

原题链接:322. 零钱兑换 - 力扣(LeetCode)

# 1. 初始状态:dp = [float("inf")] * (amount+1)
# 2. 边界条件:i-coin[j] >=0
# 3. 状态方程:dp[i] = min(dp[i-coin[j]] + 1, dp[i]), for j in len(coins)
class Solution(object):def coinChange(self, coins, amount):dp = [float("inf")] * (amount+1)dp[0] = 0for i in range(1, amount+1):for j in range(len(coins)):if i-coins[j] >= 0:dp[i] = min(dp[i-coins[j]] + 1, dp[i])return dp[-1] if dp[-1]!=float("inf") else -1

6. 单词拆分

原题链接:139. 单词拆分 - 力扣(LeetCode)

class Solution(object):def wordBreak(self, s, wordDict):dp = [0] + [False for i in range(1, len(s)+1)]for i in range(len(s)+1):if dp[i] == True:for j in range(i+1, len(s)+1):if s[i:j] in wordDict:dp[j] =  Truereturn dp[-1]

7. 最长递增子序列

原题链接:300. 最长递增子序列 - 力扣(LeetCode)

class Solution(object):def lengthOfLIS(self, nums):dp = [1 for i in range(len(nums))]for i in range(len(nums)):for j in range(i):if nums[i] > nums[j]:dp[i] = max(dp[j]+1, dp[i])return max(dp)

8. 乘积最大子数组

原题链接:152. 乘积最大子数组 - 力扣(LeetCode)

class Solution(object):def maxProduct(self, nums):# 初始状态:max_pre = min_pre = num[0]# 状态转移方程:max_pre = max(max_pre*nums[i]), min_pre*nums[i], nums[i])res = nums[0]max_pre = min_pre = nums[0]for i in range(1, len(nums)):max_pre_ = max_pre * nums[i]min_pre_ = min_pre * nums[i]max_pre = max(max_pre_, min_pre_, nums[i])min_pre = min(max_pre_, min_pre_, nums[i])res = max(res, max_pre)return res

9. 分割等和子集

原题链接:416. 分割等和子集 - 力扣(LeetCode)

class Solution(object):def canPartition(self, nums):# 0-1背包问题sums = sum(nums)if sums % 2 != 0:return Falsetarget = sums // 2n = len(nums)dp = [[False] * (target+1) for _ in range(n)]dp[0][0] = Truefor i in range(1, n):dp[i][0] = Truefor j in range(1, target+1):dp[0][j] = Falsefor i in range(1, n):for j in range(1, target+1):if j >= nums[i]:dp[i][j] = dp[i-1][j] or dp[i-1][j-nums[i]]else:dp[i][j] = dp[i-1][j]return dp[n-1][target]

10. 最长有效括号

原题链接:32. 最长有效括号 - 力扣(LeetCode)

class Solution(object):def longestValidParentheses(self, s):stack = [-1]res = 0for i in range(len(s)):if s[i] == '(':stack.append(i)else:stack.pop()if not stack:stack.append(i)else:res = max(res, i-stack[-1])return res

二、多维动态规划

11. 不同路径

原题链接:62. 不同路径 - 力扣(LeetCode)

class Solution(object):def uniquePaths(self, m, n):# 初始状态dp[i][0] = 1, dp[0][j] = 1# 状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]dp = [[0] * n for _ in range(m)]for i in range(m):dp[i][0] = 1for j in range(n):dp[0][j] = 1for i in range(1, m):for j in range(1, n):dp[i][j] = dp[i-1][j] + dp[i][j-1]return dp[-1][-1]

12. 最小路径和

原题链接:64. 最小路径和 - 力扣(LeetCode)

class Solution(object):def minPathSum(self, grid):# dp[i][0] = dp[i-1] + grid[i][0], dp[0][j] = dp[0][j-1] + grid[0][j]# dp[i][j] = min(dp[i-1][j] + grid[i][j], dp[i][j-1]+ grid[i][j])m, n =  len(grid), len(grid[0])dp = [[0] * n for _ in range(m)]dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j] + grid[i][j], dp[i][j-1]+ grid[i][j])return dp[-1][-1]

13. 最长回文子串

原题链接:5. 最长回文子串 - 力扣(LeetCode)

class Solution(object):def longestPalindrome(self, s):n = len(s)dp = [[False] * n for _ in range(n)]start, max_len = 0, 0for right in range(n):for left in range(right+1):span = right - left + 1if span == 1:dp[left][right] = Trueelif span == 2:dp[left][right] = s[left] == s[right]else:dp[left][right] = dp[left+1][right-1] and s[left] == s[right]if dp[left][right]:if span > max_len:max_len = spanstart = leftreturn s[start: start+max_len]

14. 最长公共子序列

原题链接:1143. 最长公共子序列 - 力扣(LeetCode)

class Solution(object):def longestCommonSubsequence(self, text1, text2):# 0-1 背包问题# if t1 == t2: dp[i+1][j+1] = dp[i][j] + 1# else: dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1])m, n = len(text1), len(text2)dp = [[0]* (n+1) for _ in range(m+1)]for i, t1 in enumerate(text1):for j, t2 in enumerate(text2):if t1 == t2:dp[i+1][j+1] = dp[i][j] + 1else:dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1])return dp[-1][-1]

15. 编辑距离

原题链接:72. 编辑距离 - 力扣(LeetCode)

class Solution(object):def minDistance(self, word1, word2):# 0-1 背包问题# 动态转移方程:dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1分别对应插入、删除、替换操作"""0 r o s0   0 1 2 3h   1o   2r   3s   4e   5"""m, n = len(word1), len(word2)dp = [[0] * (n+1) for _ in range(m+1)]for i in range(1, m+1):dp[i][0] = ifor j in range(1, n+1):dp[0][j] = jfor i, w1 in enumerate(word1):for j, w2 in enumerate(word2):if w1 == w2:dp[i+1][j+1] = dp[i][j]else:dp[i+1][j+1] = min(dp[i+1][j], dp[i][j+1], dp[i][j]) + 1 return dp[-1][-1]

http://www.mrgr.cn/news/97832.html

相关文章:

  • 前端三件套—CSS入门
  • WebGL数学手记:矩阵基础
  • React八案例上
  • python爬虫:DrissionPage实战教程
  • 柑橘病虫害图像分类数据集OrangeFruitDataset-8600
  • STM32——I2C通讯(软件模拟)
  • 探秘 Svelte+Vite+TS+Melt - UI 框架搭建,开启高效开发
  • PostgreSQL-数据库的索引 pg_operator_oid_index 损坏
  • SpringBoot 整合 MCP
  • JS 箭头函数
  • 【设计模式】面向对象开发学习OOPC
  • Apache Nifi安装与尝试
  • 研究嵌入式软件架构时遇到的初始化堆栈溢出问题
  • 3 版本控制:GitLab、Jenkins 工作流及分支开发模式实践
  • LeetCode Hot100 刷题笔记(2)—— 子串、普通数组、矩阵
  • 【回眸】Linux 内核 (十六) 之 多线程编程 下
  • 中间件-消息队列
  • C# 设置Excel中文本的对齐方式、换行、和旋转
  • 【HTML】纯前端网页小游戏-戳破彩泡
  • IDEA :物联网ThingsBoard-gateway配置,运行Python版本,连接thingsboard,接入 MQTT 设备