当前位置: 首页 > news >正文

Time spent invoking a CUDA kernel

The time spent invoking a CUDA kernel (i.e., launching it) is typically very small—on the order of microseconds (µs)—but depends on several factors:

Factors Affecting Kernel Launch Time:

  1. Driver Overhead:

    • The CUDA driver must perform checks, set up kernel parameters, and schedule the kernel on the GPU.
    • This usually takes 5–50 µs on modern systems.
  2. Kernel Configuration:

    • The number of thread blocks and grid dimensions can slightly affect launch overhead, but the impact is usually minimal.
  3. Synchronization:

    • By default, kernel launches are asynchronous (the CPU continues execution without waiting).
    • If you explicitly synchronize (e.g., with cudaDeviceSynchronize()), the total time includes kernel execution, not just launch overhead.
  4. CUDA Context Initialization:

    • The first kernel launch in a program may take longer (up to 100–500 ms) due to CUDA context setup.
    • Subsequent launches are much faster.
  5. Hardware & CUDA Version:

    • Newer GPUs and CUDA versions tend to have lower launch overhead.

How to Measure Kernel Launch Time:

You can use CUDA events to measure the launch time:

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);cudaEventRecord(start);
myKernel<<<grid, block>>>(...); // Kernel launch
cudaEventRecord(stop);cudaEventSynchronize(stop);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);printf("Kernel launch time: %f µs\n", milliseconds * 1000);

(Note: This measures launch + minimal GPU execution; pure launch overhead is hard to isolate.)

Summary:

  • Typical kernel launch time: ~5–50 µs (after context setup).
  • First launch in a program: Much slower (~100–500 ms) due to CUDA initialization.
  • Kernel execution time: Separate from launch time (depends on the kernel’s workload).

If you need ultra-low-latency launches, consider:

  • Avoiding frequent small kernel launches (use larger kernels or dynamic parallelism).
  • Using CUDA Graphs to reduce launch overhead for repetitive workloads.

Would you like help optimizing a specific scenario?


http://www.mrgr.cn/news/96698.html

相关文章:

  • 蓝桥杯准备(前缀和差分)
  • Android 中集成 Google 应用内评分
  • 洛谷题单2-P1424 小鱼的航程(改进版)-python-流程图重构
  • thinkcmf搭建
  • 游戏引擎学习第198天
  • 大模型高质量rag构建:A Cheat Sheet and Some Recipes For Building Advanced RAG
  • 配置防火墙和SELinux(1)
  • 【Yolov8部署】 VS2019 + opencv + onnxruntime 环境下部署目标检测模型
  • mysql 八股
  • C语言常用的字符串函数
  • 06-02-自考数据结构(20331)- 查找技术-动态查找知识点
  • 蓝桥杯 刷题对应的题解
  • Java基础 3.31
  • 【Feign】⭐️使用 openFeign 时传递 MultipartFile 类型的参数参考
  • SpringBoot详细教程(持续更新中...)
  • HCIP(RSTP+MSTP)
  • 记忆学习用内容
  • Sentinel[超详细讲解]-4
  • Axure疑难杂症:完美解决文本框读取、赋值、计数(玩转文本框)
  • 安卓一些接口使用