当前位置: 首页 > news >正文

Transformer模型:Position Embedding实现

在自然语言处理(NLP)中,Transformer 模型是一个非常重要的里程碑,它通过自注意力(self-attention)机制极大地提高了处理序列数据的能力。在 Transformer 模型中,词嵌入(Word Embedding)是输入层的关键部分,负责将离散的单词转换成连续的向量表示,以便模型能够理解和处理。然而,您提到的“Postin Embedding”可能是一个笔误,通常我们讨论的是“Position Embedding”(位置嵌入),它用于给模型提供单词在句子中的位置信息,因为 Transformer 模型本身是位置无关的。

以下是一个基于 PyTorch 的简单 Transformer 模型实现,包括词嵌入和位置嵌入的详细代码示例。这个示例将展示如何构建 Transformer 的一个基本层(包括多头自注意力机制和前馈网络),并加入位置嵌入。

import torch  
import torch.nn as nn  
import torch.nn.functional as F  class PositionalEncoding(nn.Module):  def __init__(self, d_model, max_len=5000):  super(PositionalEncoding, self).__init__()  # 创建位置编码矩阵  pe = torch.zeros(max_len, d_model)  position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)  div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))  pe[:, 0::2] = torch.sin(position * div_term)  pe[:, 1::2] = torch.cos(position * div_term)  pe = pe.unsqueeze(0).transpose(0, 1)  self.register_buffer('pe', pe)  def forward(self, x):  # 将位置编码加到词嵌入上  return x + self.pe[:x.size(0), :]  class TransformerEncoderLayer(nn.Module):  def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):  super(TransformerEncoderLayer, self).__init__()  self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)  self.linear1 = nn.Linear(d_model, dim_feedforward)  self.dropout = nn.Dropout(dropout)  self.linear2 = nn.Linear(dim_feedforward, d_model)  self.norm1 = nn.LayerNorm(d_model)  self.norm2 = nn.LayerNorm(d_model)  self.dropout1 = nn.Dropout(dropout)  self.dropout2 = nn.Dropout(dropout)  self.activation = nn.ReLU()  def forward(self, src, src_mask=None, src_key_padding_mask=None):  src2 = self.norm1(src)  src2 = self.dropout1(src2)  src_out, attn_output_weights, attn_output_mask = self.self_attn(src2, src2, src2, attn_mask=src_mask,  key_padding_mask=src_key_padding_mask)  src = src + self.dropout2(src_out)  src2 = self.norm2(src)  src2 = self.dropout(src2)  src = self.linear2(self.dropout(self.activation(self.linear1(src2))))  src = src + src2  return src, attn_output_weights  class TransformerEncoder(nn.Module):  def __init__(self, encoder_layer, num_layers, d_model, vocab_size, max_len=5000):  super(TransformerEncoder, self).__init__()  self.layer = nn.ModuleList([encoder_layer for _ in range(num_layers)])  self.src_emb = nn.Embedding(vocab_size, d_model)  self.pos_encoder = PositionalEncoding(d_model, max_len)  def forward(self, src):  src = self.src_emb(src) * math.sqrt(self.d_model)  # scale embedding by sqrt(d_model)  src = self.pos_encoder(src)  output = src  attn = None  for encoder in self.layer:  output, attn = encoder(output)  return output, attn  # 示例参数  
vocab_size = 10000  # 假设词汇表大小为 10000  
d_model = 512        # 嵌入维度  
nhead = 8            # 多头注意力机制中的头数  
num_layers = 6       # 编码器层数  # 创建 TransformerEncoder  
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead)  
transformer_encoder = TransformerEncoder(encoder_layer, num_layers, d_model, vocab_size)  # 示例输入(假设已经有一些经过编码的索引)  
src = torch.tensor([[1, 2, 3, 4, 5, 0, 0],  # 每个句子的索引,用 0 填充到相同长度  [6, 7, 8, 9, 10, 0, 0]], dtype=torch.long)  # 传递输入到 Transformer 编码器  
output, attn = transformer_encoder(src)  print("Encoder output shape:", output.shape)  # 应该是 [batch_size, seq_len, d_model]  
print("Attention weights shape (if you need them):", attn.shape)  # 注意 attn 可能在第一层之后才是有效的  # 注意:attn 的输出在这里可能不直接显示,因为它依赖于具体的层实现和是否传递了 mask。  
# 在实际应用中,你可能需要更复杂的逻辑来处理 mask 或直接忽略 attn 的输出。

以上代码实现了一个简单的 Transformer 编码器,包括词嵌入、位置嵌入、多头自注意力机制和前馈网络。在 TransformerEncoderLayer 类中,我们定义了一个编码器层,它包含了自注意力机制、层归一化、前馈网络以及相应的dropout层。TransformerEncoder 类则将这些层堆叠起来,并添加了词嵌入和位置嵌入。

请注意,在实际应用中,你可能需要添加一些额外的功能,比如掩码(mask)来处理填充的零或进行序列到序列的任务(例如翻译),以及添加解码器部分以构建完整的 Transformer 模型。此外,上述代码没有处理变长输入序列的掩码,这在实际应用中是很重要的,因为它可以防止模型关注到填充的零。


http://www.mrgr.cn/news/9410.html

相关文章:

  • 如何在 macOS 上升级 Ruby 版本
  • rust web 使用 POSTGRESQL
  • 【问题解决】本地方法部署环境不存在的问题(投机取巧方法)
  • Sentinel-1 Level 1数据处理的详细算法定义(六)
  • 暑期算法训练
  • 【生日视频制作】教师节中秋节国庆节奔驰大G汽车车身AE模板修改文字软件生成器教程特效素材【AE模板】
  • Android 10.0 系统默认打开的TP触摸开关功能实现
  • 解锁C#性能监控:内置性能计数器全解析
  • vue export的用法
  • Git的使用教程及常用语法03
  • 华为数通方向HCIP-DataCom H12-821题库(更新单选真题:1-10)
  • 【0317】Postgres内核之VACUUM (FULL)通用 utility function invoker (12)
  • 五、Centos7-安装Jenkins
  • 【Nature】在科研中应用ChatGPT:如何与数据对话
  • JS中【map】知识点和用法介绍
  • OpenCV几何图像变换(8)调整图像大小的函数resize()的使用
  • 公考面试笔记_社会现象类1
  • P(查准率) R(查全率) AP mAP最通俗准确的讲解
  • 网络安全售前入门01——产品了解
  • 调度中心控制台的重要性体现在哪些方面