当前位置: 首页 > news >正文

【算法】粒子群优化

一、引言

        粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化技术,由Eberhart和Kennedy在1995年提出。它模拟鸟群觅食行为,通过个体与群体的协作来寻找最优解。通过模拟一群粒子的运动来寻找最优解。每个粒子代表一个可能的解,并且根据自身经验和群体经验来更新位置。

二、算法原理

        PSO算法中,每个解被视为搜索空间中的一个“粒子”,每个粒子代表了问题的潜在解,并具有相应的位置和速度。粒子在搜索空间中飞行,通过跟踪两个“极值”来更新自己的位置和速度:

  • 个体极值:粒子自身所找到的最优解。
  • 全局极值:整个粒子群中所有粒子所找到的最优解。

        粒子的位置和速度根据个体极值和全局极值进行更新。

三、数据结构

PSO算法涉及的主要数据结构包括:

  • 粒子(Particle)

    • position: 当前粒子的位置
    • velocity: 当前粒子的速度
    • best_position: 粒子的历史最佳位置
    • best_value: 粒子的最佳适应度值
  • 群体(Swarm)

    • particles: 存储所有粒子的列表
    • global_best_position: 全局最佳位置
    • global_best_value: 全局最佳适应度值
  • 目标函数:粒子优化的目标函数,用于评估解的质量。

四、算法使用场景

PSO算法适用于:

  • 函数优化:连续空间的全局优化问题、寻找函数的最小值或最大值
  • 神经网络训练:作为权重调整的优化算法。

  • 模式识别:特征选择和参数优化。
  • 机器学习参数优化:在训练机器学习模型时,PSO可以用于优化模型参数。
  • 组合优化问题:如旅行商问题(TSP)、排程问题等。
  • 工程设计问题:如结构优化、电路设计等。
  • 路径规划:在机器人和无人机的路径规划中寻找最优路径。
  • 图像处理:图像分割和特征选择等。

五、算法实现

伪代码如下:

function PSO(numParticles, numIterations):
Initialize particles and global best
For each iteration:
For each particle:
Update velocity
Update position
Evaluate the fitness function
Update personal and global bests

六、其他同类算法对比

  • 遗传算法(Genetic Algorithm, GA):基于自然选择和遗传机制的搜索算法。
  • 模拟退火(Simulated Annealing, SA):基于物理退火过程的优化方法。
  • 蚁群算法(Ant Colony Optimization, ACO):模拟蚂蚁觅食行为的启发式搜索算法。

七、多语言代码实现

    Java

import java.util.Random;class Particle {double[] position;double[] velocity;double[] bestPosition;double bestValue;public Particle(int dimensions, double lowerBound, double upperBound) {position = new double[dimensions];velocity = new double[dimensions];bestPosition = new double[dimensions];Random rand = new Random();for (int i = 0; i < dimensions; i++) {position[i] = lowerBound + (upperBound - lowerBound) * rand.nextDouble();velocity[i] = (rand.nextDouble() - 0.5) * 2; // Random velocity}bestPosition = position.clone();bestValue = Double.POSITIVE_INFINITY;}
}class PSO {private Particle[] particles;private double[] globalBestPosition;private double globalBestValue;private int dimensions;private double lowerBound;private double upperBound;private int maxIter;public PSO(int numParticles, int dimensions, double lowerBound, double upperBound, int maxIter) {this.dimensions = dimensions;this.lowerBound = lowerBound;this.upperBound = upperBound;this.maxIter = maxIter;particles = new Particle[numParticles];globalBestPosition = new double[dimensions];globalBestValue = Double.POSITIVE_INFINITY;for (int i = 0; i < numParticles; i++) {particles[i] = new Particle(dimensions, lowerBound, upperBound);}}public void optimize() {Random rand = new Random();for (int iter = 0; iter < maxIter; iter++) {for (Particle particle : particles) {double value = objectiveFunction(particle.position);if (value < particle.bestValue) {particle.bestValue = value;particle.bestPosition = particle.position.clone();}if (value < globalBestValue) {globalBestValue = value;globalBestPosition = particle.position.clone();}}for (Particle particle : particles) {double inertia = 0.5;double cognitive = 1.5 * rand.nextDouble() * (particle.bestPosition[0] - particle.position[0]);double social = 1.5 * rand.nextDouble() * (globalBestPosition[0] - particle.position[0]);for (int i = 0; i < dimensions; i++) {particle.velocity[i] = inertia * particle.velocity[i] + cognitive + social;particle.position[i] += particle.velocity[i];// Bound checkif (particle.position[i] < lowerBound) particle.position[i] = lowerBound;if (particle.position[i] > upperBound) particle.position[i] = upperBound;}}}}private double objectiveFunction(double[] position) {double sum = 0;for (double v : position) {sum += v * v; // Example: sum of squares}return sum;}public double[] getGlobalBestPosition() {return globalBestPosition;}public double getGlobalBestValue() {return globalBestValue;}public static void main(String[] args) {PSO pso = new PSO(30, 2, -10, 10, 100);pso.optimize();System.out.println("Best Position: " + Arrays.toString(pso.getGlobalBestPosition()));System.out.println("Best Value: " + pso.getGlobalBestValue());}
}

C++

#include <iostream>
#include <vector>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <cmath>class Particle {
public:std::vector<double> position;std::vector<double> velocity;std::vector<double> bestPosition;double bestValue;Particle(int dimensions, double lowerBound, double upperBound) {position.resize(dimensions);velocity.resize(dimensions);bestPosition.resize(dimensions);for (int i = 0; i < dimensions; ++i) {position[i] = lowerBound + static_cast<double>(rand()) / RAND_MAX * (upperBound - lowerBound);velocity[i] = (static_cast<double>(rand()) / RAND_MAX - 0.5) * 2; // Random velocity}bestPosition = position;bestValue = std::numeric_limits<double>::infinity();}
};class PSO {
private:std::vector<Particle> particles;std::vector<double> globalBestPosition;double globalBestValue;int dimensions;double lowerBound;double upperBound;int maxIter;public:PSO(int numParticles, int dimensions, double lowerBound, double upperBound, int maxIter): dimensions(dimensions), lowerBound(lowerBound), upperBound(upperBound), maxIter(maxIter) {particles.reserve(numParticles);globalBestValue = std::numeric_limits<double>::infinity();for (int i = 0; i < numParticles; ++i) {particles.emplace_back(dimensions, lowerBound, upperBound);}}void optimize() {for (int iter = 0; iter < maxIter; ++iter) {for (auto& particle : particles) {double value = objectiveFunction(particle.position);if (value < particle.bestValue) {particle.bestValue = value;particle.bestPosition = particle.position;}if (value < globalBestValue) {globalBestValue = value;globalBestPosition = particle.position;}}for (auto& particle : particles) {double inertia = 0.5;double cognitive = 1.5 * static_cast<double>(rand()) / RAND_MAX * (particle.bestPosition[0] - particle.position[0]);double social = 1.5 * static_cast<double>(rand()) / RAND_MAX * (globalBestPosition[0] - particle.position[0]);for (int i = 0; i < dimensions; ++i) {particle.velocity[i] = inertia * particle.velocity[i] + cognitive + social;particle.position[i] += particle.velocity[i];// Bound checkif (particle.position[i] < lowerBound) particle.position[i] = lowerBound;if (particle.position[i] > upperBound) particle.position[i] = upperBound;}}}}double objectiveFunction(const std::vector<double>& position) {double sum = 0;for (double v : position) {sum += v * v; // Example: sum of squares}return sum;}const std::vector<double>& getGlobalBestPosition() const {return globalBestPosition;}double getGlobalBestValue() const {return globalBestValue;}
};int main() {srand(static_cast<unsigned>(time(0)));PSO pso(30, 2, -10, 10, 100);pso.optimize();const auto& bestPosition = pso.getGlobalBestPosition();std::cout << "Best Position: ";for (const auto& pos : bestPosition) {std::cout << pos << " ";}std::cout << "\nBest Value: " << pso.getGlobalBestValue() << std::endl;return 0;
}

Python

import numpy as npclass Particle:def __init__(self, bounds):self.position = np.random.uniform(bounds[0], bounds[1], size=(len(bounds)//2,))self.velocity = np.random.uniform(-1, 1, size=(len(bounds)//2,))self.best_position = self.position.copy()self.best_value = float('inf')class PSO:def __init__(self, func, bounds, num_particles, max_iter):self.func = funcself.bounds = boundsself.num_particles = num_particlesself.max_iter = max_iterself.particles = [Particle(bounds) for _ in range(num_particles)]self.global_best_position = Noneself.global_best_value = float('inf')def optimize(self):for _ in range(self.max_iter):for particle in self.particles:value = self.func(particle.position)if value < particle.best_value:particle.best_value = valueparticle.best_position = particle.position.copy()if value < self.global_best_value:self.global_best_value = valueself.global_best_position = particle.position.copy()for particle in self.particles:r1, r2 = np.random.rand(2)inertia = 0.5cognitive = 1.5 * r1 * (particle.best_position - particle.position)social = 1.5 * r2 * (self.global_best_position - particle.position)particle.velocity = inertia * particle.velocity + cognitive + socialparticle.position += particle.velocity# Bound checkparticle.position = np.clip(particle.position, self.bounds[0], self.bounds[1])return self.global_best_position, self.global_best_value# Example usage
def objective_function(x):return sum(x**2)bounds = [-10, 10]
pso = PSO(objective_function, bounds, num_particles=30, max_iter=100)
best_position, best_value = pso.optimize()
print(f"Best Position: {best_position}, Best Value: {best_value}")

 Go

package mainimport ("fmt""math/rand""time"
)type Particle struct {position     []float64velocity     []float64bestPosition []float64bestValue    float64
}type PSO struct {particles          []ParticleglobalBestPosition []float64globalBestValue    float64dimensions         intlowerBound         float64upperBound         float64maxIter            int
}func NewParticle(dimensions, lowerBound, upperBound float64) Particle {position := make([]float64, dimensions)velocity := make([]float64, dimensions)bestPosition := make([]float64, dimensions)for i := 0; i < int(dimensions); i++ {position[i] = lowerBound + rand.Float64()*(upperBound-lowerBound)velocity[i] = (rand.Float64() - 0.5) * 2 // Random velocity}copy(bestPosition, position)return Particle{position, velocity, bestPosition, 1e10}
}func NewPSO(numParticles, dimensions int, lowerBound, upperBound float64, maxIter int) *PSO {particles := make([]Particle, numParticles)for i := 0; i < numParticles; i++ {particles[i] = NewParticle(float64(dimensions), lowerBound, upperBound)}return &PSO{particles, nil, 1e10, dimensions, lowerBound, upperBound, maxIter}
}func (pso *PSO) objectiveFunction(position []float64) float64 {sum := 0.0for _, v := range position {sum += v * v // Example: sum of squares}return sum
}func (pso *PSO) Optimize() {for iter := 0; iter < pso.maxIter; iter++ {for i := range pso.particles {particle := &pso.particles[i]value := pso.objectiveFunction(particle.position)if value < particle.bestValue {particle.bestValue = valueparticle.bestPosition = make([]float64, len(particle.position))copy(particle.bestPosition, particle.position)}if value < pso.globalBestValue {pso.globalBestValue = valuepso.globalBestPosition = make([]float64, len(particle.position))copy(pso.globalBestPosition, particle.position)}}for i := range pso.particles {particle := &pso.particles[i]inertia := 0.5cognitive := 1.5 * rand.Float64() * (particle.bestPosition[0] - particle.position[0])social := 1.5 * rand.Float64() * (pso.globalBestPosition[0] - particle.position[0])for j := 0; j < pso.dimensions; j++ {particle.velocity[j] = inertia*particle.velocity[j] + cognitive + socialparticle.position[j] += particle.velocity[j]// Bound checkif particle.position[j] < pso.lowerBound {particle.position[j] = pso.lowerBound}if particle.position[j] > pso.upperBound {particle.position[j] = pso.upperBound}}}}
}func main() {rand.Seed(time.Now().UnixNano())pso := NewPSO(30, 2, -10, 10, 100)pso.Optimize()fmt.Printf("Best Position: %v\n", pso.globalBestPosition)fmt.Printf("Best Value: %v\n", pso.globalBestValue)
}

八、实际服务应用场景与代码框架

        实现一个供应链优化系统,使用粒子群优化算法来确定最优的货物分配策略。

系统架构

        问题定义:定义货物分配的优化目标和约束条件。

        粒子初始化:初始化粒子群,每个粒子代表一种可能的货物分配方案。

        评估与更新:评估每个粒子的适应度,并根据PSO算法更新粒子的位置和速度。

        最优解获取:经过多次迭代后,获取最优的货物分配方案。

代码框架

以下是使用Python实现的供应链优化系统的代码框架:

class SupplyChainOptimizer:def __init__(self, num_particles, dimensions, lower_bound, upper_bound):self.pso = PSO(num_particles, dimensions, lower_bound, upper_bound)def evaluate_fitness(self, particle):# 评估货物分配方案的适应度passdef optimize(self, iterations):for _ in range(iterations):self.pso.update_velocity_position()self.pso.evaluate()def get_best_solution(self):# 获取最优解pass# 使用示例
optimizer = SupplyChainOptimizer(num_particles=30, dimensions=5, lower_bound=-10, upper_bound=10)
optimizer.optimize(100)
best_solution = optimizer.get_best_solution()
print(f"Best solution: {best_solution}")

   数据准备

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score# Load dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

定义目标函数

def objective_function(params):C, gamma = paramsmodel = SVC(C=C, gamma=gamma)model.fit(X_train, y_train)predictions = model.predict(X_test)return -accuracy_score(y_test, predictions)  # Minimize negative accuracy

粒子群优化实现

class Particle:def __init__(self, bounds):self.position = np.random.uniform(bounds[0], bounds[1], size=(len(bounds)//2,))self.velocity = np.random.uniform(-1, 1, size=(len(bounds)//2,))self.best_position = self.position.copy()self.best_value = float('inf')class PSO:def __init__(self, func, bounds, num_particles, max_iter):self.func = funcself.bounds = boundsself.num_particles = num_particlesself.max_iter = max_iterself.particles = [Particle(bounds) for _ in range(num_particles)]self.global_best_position = Noneself.global_best_value = float('inf')def optimize(self):for _ in range(self.max_iter):for particle in self.particles:value = self.func(particle.position)if value < particle.best_value:particle.best_value = valueparticle.best_position = particle.position.copy()if value < self.global_best_value:self.global_best_value = valueself.global_best_position = particle.position.copy()for particle in self.particles:r1, r2 = np.random.rand(2)inertia = 0.5cognitive = 1.5 * r1 * (particle.best_position - particle.position)social = 1.5 * r2 * (self.global_best_position - particle.position)particle.velocity = inertia * particle.velocity + cognitive + socialparticle.position += particle.velocity# Bound checkparticle.position = np.clip(particle.position, self.bounds[0], self.bounds[1])return self.global_best_position, self.global_best_value

 执行优化

bounds = [[0.1, 100], [0.0001, 1]]  # C and gamma bounds
pso = PSO(objective_function, bounds, num_particles=30, max_iter=100)
best_params, best_value = pso.optimize()
print(f"Best Parameters: C={best_params[0]}, gamma={best_params[1]}, Best Value: {best_value}")

        过去与现在:PSO最初应用于函数优化问题,随着研究的深入,逐渐扩展到机器学习、数据挖掘、图像处理等多个领域。近年来,研究者对PSO进行了多种改进,如引入混沌理论、模糊逻辑等,以增强其全局搜索能力和收敛速度。

        优势:PSO具有简单易懂的结构和较少的参数设置,适用于多种优化问题。它能够有效地处理非线性、多峰值和高维问题,且收敛速度较快,适合实时优化。

        缺点:尽管PSO表现出色,但仍存在一些不足之处,如易陷入局部最优解、对参数设置敏感等。此外,在处理高维复杂问题时,可能会出现收敛速度减慢的问题。

        粒子群优化算法凭借其灵活性和有效性,已成为优化领域的重要工具,仍有广阔的发展空间。


http://www.mrgr.cn/news/7408.html

相关文章:

  • HarmonyOS应用开发者基础认证
  • python脚本:输入基因名,通过爬虫的方式获取染色体上的location。
  • 英伟达H20核心价值和高效运用揭秘
  • 微知-lspci如何查看pcie设备树状结构(-t)
  • el-image的配套使用(表格,表单)
  • 【PyTorch】深度学习PyTorch加载数据
  • react 路由创建与使用
  • docker应用
  • 软件测试——自动化测试selenium常用函数
  • 关于python的Django项目性能优化
  • 【开源社区】Elasticsearch(ES)中 exists 查询空值字段的坑
  • CSS3多行多栏布局
  • 计算机网络——HTTP与HTTPS协议
  • Frog4Shell — FritzFrog 僵尸网络将一日攻击纳入其武器库
  • 深度学习/机器学习软件教学平台
  • 记录一次经历:使用flask_sqlalchemy集成flask造成循环导入问题
  • python-docx 实现 Word 办公自动化
  • 如何使用 Python创建一个视频文件管理器并实现视频截图功能
  • Fiddle抓手机app的包
  • 等保测评基础知识(六)