当前位置: 首页 > news >正文

区间预测|基于灰狼优化最小二乘支持向量机的多变量回归区间预测Matlab程序GWO-LSSVM-ABKDE

区间预测|基于灰狼优化最小二乘支持向量机的多变量回归区间预测Matlab程序GWO-LSSVM-ABKDE

文章目录

  • 前言
    • 区间预测|基于灰狼优化最小二乘支持向量机的多变量回归区间预测Matlab程序GWO-LSSVM-ABKDE
  • 一、GWO-LSSVM-ABKDE模型
      • 1. 灰狼优化算法(GWO)
      • 2. 最小二乘支持向量机(LSSVM)
      • 3. 自适应带宽核密度估计(ABKDE)
      • GWO-LSSVM-ABKDE模型的流程
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

区间预测|基于灰狼优化最小二乘支持向量机的多变量回归区间预测Matlab程序GWO-LSSVM-ABKDE

一、GWO-LSSVM-ABKDE模型

GWO-LSSVM-ABKDE模型结合了灰狼优化算法(GWO)、最小二乘支持向量机(LSSVM)和自适应带宽核密度估计(ABKDE)来进行区间预测。这种模型利用GWO优化LSSVM的参数,并通过ABKDE提供区间预测。以下是每个部分的详细原理和它们在模型中的流程:

1. 灰狼优化算法(GWO)

灰狼优化算法(GWO)是一种模拟灰狼捕猎行为的元启发式优化算法。其基本原理包括:

  • 社会结构:灰狼群体由阿尔法狼、贝塔狼、德尔塔狼和欧米伽狼组成,阿尔法狼负责引导捕猎,贝塔狼帮助阿尔法狼,德尔塔狼则负责执行命令,欧米伽狼位于群体底层。
  • 猎捕策略:GWO模拟了灰狼的围捕行为,包括包围猎物、逼近猎物、攻击猎物等。算法通过更新灰狼的位置来逐步逼近最优解。

2. 最小二乘支持向量机(LSSVM)

最小二乘支持向量机(LSSVM)是一种回归分析方法,与传统支持向量机(SVM)相比,LSSVM在训练过程中使用最小二乘损失函数。这使得LSSVM训练过程更为简化和高效。LSSVM的基本原理包括:

  • 目标函数:最小化回归模型的平方误差而不是常规的结构风险最小化。
  • 核函数:通过核函数将输入数据映射到高维特征空间,以便在该空间中进行线性回归。

3. 自适应带宽核密度估计(ABKDE)

自适应带宽核密度估计(ABKDE)是一种非参数的密度估计方法,用于区间预测。其主要特点包括:

  • 核密度估计(KDE):KDE通过平滑每个数据点来估计数据的概率密度函数。
  • 自适应带宽:与固定带宽的KDE不同,ABKDE使用自适应带宽,即根据数据的局部密度调整带宽,从而提高估计的精度。

GWO-LSSVM-ABKDE模型的流程

  1. 数据准备:收集和整理训练数据集。数据应包括历史观测值和目标变量值。

  2. 参数优化

    • 初始化GWO:初始化灰狼群体的位置,设置算法参数。
    • 优化LSSVM参数:使用GWO算法来优化LSSVM模型的关键参数(如惩罚因子和核函数参数)。GWO通过迭代更新狼群的位置来找到最优参数。
  3. 训练LSSVM

    • 构建LSSVM模型:使用优化后的参数训练LSSVM回归模型。
    • 模型拟合:将训练数据输入LSSVM模型以获得回归预测结果。
  4. 区间预测

    • 应用ABKDE:对LSSVM的预测结果应用ABKDE来估计预测区间。ABKDE根据数据的局部特性调整带宽,从而提供更精确的区间预测。
  5. 结果评估

    • 评估预测性能:使用测试数据集评估模型的预测准确性和区间覆盖率。
    • 调整和优化:根据评估结果进行模型调整和参数优化,以提高预测性能。

通过这种组合,GWO-LSSVM-ABKDE模型能够利用GWO优化LSSVM的参数,并通过ABKDE提供更精确的区间预测。

二、实验结果

GWO-LSSVM-ABKDE区间预测结果
在这里插入图片描述

LSSVM-ABKDE区间预测结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

四、代码获取

私信即可 50米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出


http://www.mrgr.cn/news/7007.html

相关文章:

  • Spring websocket并发发送消息异常的解决
  • Oracle 同义词SYNONYM 的使用
  • 使用redis模拟cookie-session,例子:实现验证码功能
  • 每天一个数据分析题(四百九十一)- 主成分分析与因子分析
  • 在AES加密中,设主密钥为“2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C”,试计算迭代第1轮使用的轮密钥。
  • 深入解析:Objective-C中的NSLock与NSRecursiveLock的异同
  • OpenCV c++ 实现图像马赛克效果
  • 大模型训练核心算法之——损失函数算法
  • AI 功能上新!用 Einstein Copilot for Tableau 加速商业数据分析全过程
  • 【Qt】 对象树 与 乱码问题
  • 服务器数据恢复—重建RAID失败导致数据丢失的数据恢复案例
  • Pandas里使用SQL
  • os 虚拟内存
  • TCP与UDP传输的学习
  • Web应用服务器Tomcat
  • 如何在Geth中搭建P2P多节点以太坊私链:详细教程与实操步骤
  • 【算法】希尔排序、计数排序、桶排序、基数排序
  • 入门Java编程的知识点—>程序结构(day04)
  • 代码随想录day52 101孤岛的总面积 102沉没孤岛 103水流问题 104建造最大岛屿
  • CentOS7发送邮件如何配置SMTP服务器发信?