指数运算和幂运算
 指数运算和幂运算  
 - 1. Exponentiation (指数运算和幂运算)
- 2. Exponent rules (指数定律)
- 3. Particular bases (特殊底数的幂)
- 4. Integer exponents (整数指数的幂)
- References
1. Exponentiation (指数运算和幂运算)
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as  b n b^n bn, where  b b b is the base and  n n n is the power; this is pronounced as “ b b b (raised) to the (power of)  n n n”.
 在数学中,重复连乘的运算叫做乘方,乘方的结果称为幂。在  b n b^n bn 中,底数为  b b b,指数为  n n n。
When  n n n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is,  b n b^n bn is the product of multiplying  n n n bases.
 若  n n n 为正整数, n n n 个相同的数  b b b 连续相乘 (即  b b b 自乘  n n n 次),就可将  b n b^n bn 看作乘方的结果幂。
  b n = b × b × ⋯ × b × b ⏟ n times b^n = \underbrace{b \times b \times \dots \times b \times b}_{n \text{ times}} bn=n times   b×b×⋯×b×b
In particular,  b 1 = b b^1=b b1=b.
 当指数为 1 时,通常不写出来,因为运算出的值和底数的数值一样。
The expression  b 2 = b ∗ b b^{2} = b * b b2=b∗b is called “the square of  b b b” or “ b b b squared”, because the area of a square with side-length  b b b is  b 2 b^2 b2.
 指数为 2 时,可以读作  b b b 的平方。
the expression  b 3 = b ∗ b ∗ b b^{3} = b * b * b b3=b∗b∗b is called “the cube of  b b b” or “ b b b cubed”, because the volume of a cube with side-length  b b b is  b 3 b^3 b3.
 指数为 3 时,可以读作  b b b 的立方。
mathematics /ˌmæθəˈmætɪks/:n. 数学,计算,运算
exponentiation /ˌekspoʊˌnenʃɪ'eɪʃən/:n. 指数运算,幂运算
exponent /ɪkˈspəʊnənt/:n. 指数,幂,(观点、理论的) 拥护者,鼓吹者,倡导者,(某种活动的) 能手,大师 adj. 讲解的
power /ˈpaʊə(r)/:n. 权力,能力,操纵力,职权,政权,体力,强国,实力,影响力,动力,能量,电力供应,幂,放大率,势力 v. 驱动,快速前进 adj. 电动的
The exponent is usually shown as a superscript to the right of the base as  b n b^n bn or in computer code as b^n. In that case,  b n b^n bn is called “ b b b raised to the  n n nth power”, “ b b b to the power of  n n n”, “the  n n nth power of  b b b”, or most briefly as “ b b b to the  n n n”.
 幂运算 (exponentiation) 又称指数运算,表达式为  b n b^n bn,读作  b b b 的  n n n 次方或  b b b 的  n n n 次幂。其中  b b b 称为底数,而  n n n 称为指数,通常指数写成上标,放在底数的右边。 b n b^{n} bn 通常写成 b^n 或 b**n。
The above definition of b n b^{n} bn immediately implies several properties, in particular the multiplication rule:
b n × b m = b × ⋯ × b ⏟ n times × b × ⋯ × b ⏟ m times = b × ⋯ × b ⏟ n + m times = b n + m b^n \times b^m = \underbrace{b \times \dots \times b}_{n \text{ times}} \times \underbrace{b \times \dots \times b}_{m \text{ times}} = \underbrace{b \times \dots \times b}_{n+m \text{ times}} = b^{n+m} bn×bm=n times b×⋯×b×m times b×⋯×b=n+m times b×⋯×b=bn+m
That is, when multiplying a base raised to one power times the same base raised to another power, the powers add.
Extending this rule to the power zero gives  b 0 × b n = b 0 + n = b n b^0 \times b^n = b^{0+n} = b^n b0×bn=b0+n=bn, and dividing both sides by  b n b^n bn gives  b 0 = b n / b n = 1 b^0 = b^n / b^n = 1 b0=bn/bn=1. That is, the multiplication rule implies the definition  b 0 = 1 b^0=1 b0=1.
 指数是 0 时,底数不为 0,幂均为 1 (即除 0 外,所有数的 0 次方都是 1):
  b 0 = 1 ( b ≠ 0 ) b^{0} = 1 \quad (b \ne 0) b0=1(b=0)
 0 的 0 次方 ( 0 0 0^{0} 00) 目前数学家没有给予正式的定义,在部分数学领域中,常用的惯例是定义为 1 。
A similar argument implies the definition for negative integer powers:  b − n = 1 / b n b^{-n} = 1/b^n b−n=1/bn.
 指数是负数时,就等于重复除以底数 (或底数的倒数自乘指数这么多次):
  b − n = 1 b × ⋯ × b ⏟ n = 1 b n = ( 1 b ) n ( b ≠ 0 ) b^{-n} = {1 \over \underbrace{b\times\cdots\times b}_n} = \frac{1}{b^n} = \left(\frac{1}{b}\right)^{n} \quad (b \ne 0) b−n=n   b×⋯×b1=bn1=(b1)n(b=0)
That is, extending the multiplication rule gives  b − n × b n = b − n + n = b 0 = 1 b^{-n} \times b^n = b^{-n+n} = b^0 = 1 b−n×bn=b−n+n=b0=1. Dividing both sides by  b n b^n bn gives  b − n = 1 / b n b^{-n} = 1 / b^n b−n=1/bn. This also implies the definition for fractional powers:  b n / m = b n m b^{n/m} = \sqrt[m]{b^n} bn/m=mbn.
 若以分数为指数的幂,则定义  b n m = b n m b^{\frac{n}{m}} = \sqrt[m]{b^{n}} bmn=mbn,即  b b b 的  n n n 次方再开  m m m 次方根。
For example, b 1 / 2 × b 1 / 2 = b 1 / 2 + 1 / 2 = b 1 = b b^{1/2} \times b^{1/2} = b^{1/2 \,+\, 1/2} = b^1 = b b1/2×b1/2=b1/2+1/2=b1=b, meaning ( b 1 / 2 ) 2 = b (b^{1/2})^2 = b (b1/2)2=b, which is the definition of square root: b 1 / 2 = b b^{1/2} = \sqrt{b} b1/2=b.
2. Exponent rules (指数定律)
- a m × a n = a m + n a^m \times a^n = a^{m + n} am×an=am+n
同底数幂相乘,底数不变,指数相加。
- a m ÷ a n = a m − n a^m \div a^n = a^{m - n} am÷an=am−n
同底数幂相除,底数不变,指数相减。
- a n b n = ( a b ) n \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n bnan=(ba)n
同指数幂相除,指数不变,底数相除 ( b b b 不为 0)。
-  a n ⋅ b n = ( a ⋅ b ) n a^n \cdot b^n = (a \cdot b)^n an⋅bn=(a⋅b)n 
-  ( a m ) n = a m ⋅ n \left(a^m\right)^n = a^{m \cdot n} (am)n=am⋅n 
-  x m n = x m n x^\frac{m}{n} = \sqrt[n]{x^m} xnm=nxm 
-  x − m = 1 x m ( x ≠ 0 ) x^{-m} = \frac{1}{x^m} \quad (x \ne 0) x−m=xm1(x=0) 
-  x 0 = 1 ( x ≠ 0 ) x^0 = 1 \quad (x \ne 0) x0=1(x=0) 
-  x 1 = x x^1 = x x1=x 
-  x − 1 = 1 x ( x ≠ 0 ) x^{-1} = \frac{1}{x} \quad (x \ne 0) x−1=x1(x=0) 
3. Particular bases (特殊底数的幂)
- Powers of ten (10 的幂)
In the base ten (decimal) number system, integer powers of 10 are written as the digit 1 followed or preceded by a number of zeroes determined by the sign and magnitude of the exponent. For example,  1 0 3 = 1000 10^{3} = 1000 103=1000,  1 0 − 3 = 0.001 10^{-3} = 0.001 10−3=0.001 and  1 0 − 4 = 0.0001 10^{-4} = 0.0001 10−4=0.0001.
 在十进制的计数系统中,10 的幂写成 1 后面跟着很多个 0。
- Powers of two (2 的幂)
The first negative powers of 2 have special names:  2 − 1 2^{-1} 2−1 is a half;  2 − 2 2^{-2} 2−2 is a quarter.
- Powers of one (1 的幂)
Every power of one equals:  1 n = 1 1^n = 1 1n=1.
 1 的任何次幂都为 1。
- Powers of zero (0 的幂)
For a positive exponent  n > 0 n > 0 n>0, the  n n nth power of zero is zero:  0 n = 0 0^n = 0 0n=0. For a negative exponent,  0 − n = 1 / 0 n = 1 / 0 0^{-n}=1/0^n=1/0 0−n=1/0n=1/0 is undefined.
 0 的正数幂都等于 0,0 的负数幂没有定义。
The expression  0 0 0^0 00 is either defined as  lim  x → 0 x x = 1 \lim\limits_{x\to 0} x^x = 1 x→0limxx=1, or it is left undefined.
 任何非 0 之数的 0 次方都是 1;而 0 的 0 次方是悬而未决的,某些领域下常用的惯例是约定为 1。
- Powers of negative one (负 1 的幂)
Since a negative number times another negative is positive, we have:
  ( − 1 ) n = { 1 for even  n , − 1 for odd  n . (-1)^n = \left\{\begin{array}{rl} 1 & \text{for even } n, \\ -1 & \text{for odd } n. \\ \end{array}\right. (−1)n={1−1for even n,for odd n.
Because of this, powers of −1 are useful for expressing alternating sequences.
 -1 的奇数幂等于 -1,-1 的偶数幂等于 1。
- Large exponents (指数非常大时的幂)
The limit of a sequence of powers of a number greater than one diverges; in other words, the sequence grows without bound:  b n → ∞ b^n \rightarrow \infty bn→∞ as  n → ∞ n \rightarrow \infty n→∞ when  b > 1 b > 1 b>1
 This can be read as “ b b b to the power of  n n n tends to  + ∞ +\infty +∞ as  n n n tends to infinity when  b b b is greater than one”.
 一个大于 1 的数的幂趋于无穷大,一个小于 -1 的数的幂趋于负无穷大。
 当  a > 1 a > 1 a>1, n → ∞ n \to \infty n→∞, a n → ∞ a^n \to \infty an→∞
 当  a < − 1 a < -1 a<−1, n → ∞ n \to \infty n→∞, a n → − ∞ a^n \to -\infty an→−∞ 或  ∞ \infty ∞ (取决于  n n n 是奇数或偶数)
Powers of a number with absolute value less than one tend to zero:  b n → 0 b^n \rightarrow 0 bn→0 as  n → ∞ n \rightarrow \infty n→∞ when  ∣ b ∣ < 1 |b| < 1 ∣b∣<1
 一个绝对值小于 1 的数的幂趋于 0,当  ∣ a ∣ < 1 |a| < 1 ∣a∣<1, n → ∞ n \to \infty n→∞, a n → 0 a^n \to 0 an→0
Any power of one is always one:  b n = 1 b^{n} = 1 bn=1 for all  n n n for  b = 1 b = 1 b=1
 1 的幂永远都是 1,当  a = 1 a = 1 a=1, n → ∞ n \to \infty n→∞, a n → 1 a^n \to 1 an→1
Powers of a negative number  b ≤ − 1 b \leq -1 b≤−1 alternate between positive and negative as  n n n alternates between even and odd, and thus do not tend to any limit as  n n n grows.
 当  n → ∞ n \to \infty n→∞,  ( 1 + 1 n ) n → e \left(1+\frac{1}{n}\right)^n \to e (1+n1)n→e
4. Integer exponents (整数指数的幂)
- Positive exponents (正整数指数的幂)
The base case is b 1 = b b^1 = b b1=b and the recurrence is b n + 1 = b n ⋅ b b^{n+1} = b^n \cdot b bn+1=bn⋅b.
The associativity of multiplication implies that for any positive integers m m m and n n n, b m + n = b m ⋅ b n b^{m+n} = b^m \cdot b^n bm+n=bm⋅bn, and ( b m ) n = b m ⋅ n \left(b^m\right)^n = b^{m \cdot n} (bm)n=bm⋅n.
- Zero exponent (指数 0 的幂)
As mentioned earlier, a (nonzero) number raised to the 0 power is 1:  b 0 = 1 b^0 = 1 b0=1.
- Negative exponents (负数指数的幂)
Exponentiation with negative exponents is defined by the following identity, which holds for any integer  n n n and nonzero  b b b:  b − n = 1 b n b^{-n} = \frac{1}{b^n} b−n=bn1.
 任何不为 0 的数 a 的 -1 次方等于它的倒数  a − 1 = 1 a a^{-1} = \frac{1}{a} a−1=a1。
对于非零  a a a 定义  a − n = 1 a n a^{-n} = \frac{1}{a^n} a−n=an1,而  a = 0 a = 0 a=0 时分母为 0 没有意义。
根据定义 a m ⋅ a n = a m + n a^m\cdot a^n = a^{m+n} am⋅an=am+n,当 m = − n m = -n m=−n 时 a − n a n = a − n + n = a 0 = 1 a^{-n} \, a^{n} = a^{-n\,+\,n} = a^0 = 1 a−nan=a−n+n=a0=1,得 a − n a n = 1 a^{-n} \, a^{n} = 1 a−nan=1, 所以 a − n = 1 a n a^{-n} = \frac{1}{a^{n}} a−n=an1。
通过运算法则 a m a n = a m − n \frac{a^m}{a^n} = a^{m - n} anam=am−n,当 m = 0 m = 0 m=0 时,可得 a − n = a 0 − n = a 0 a n = 1 a n a^{-n} = a^{0-n} = \frac{a^0}{a^n} = \frac{1}{a^{n}} a−n=a0−n=ana0=an1
References
[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
 [2] Exponentiation, https://en.wikipedia.org/wiki/Exponentiation
 [3] Exponent rules, https://www.rapidtables.com/math/number/exponent.html
 [4] Exponential function, https://en.wikipedia.org/wiki/Exponential_function
