当前位置: 首页 > news >正文

Spark2.x 入门:DStream 输出操作

在Spark应用中,外部系统经常需要使用到Spark DStream处理后的数据,因此,需要采用输出操作把DStream的数据输出到数据库或者文件系统中。

这里以《Spark2.1.0入门:DStream输出操作》中介绍的NetworkWordCountStateful.scala为基础进行修改。

把DStream输出到文本文件中

NetworkWordCountStateful.scala

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.storage.StorageLevelobject NetworkWordCountStateful {def main(args: Array[String]) {//定义状态更新函数val updateFunc = (values: Seq[Int], state: Option[Int]) => {val currentCount = values.foldLeft(0)(_ + _)val previousCount = state.getOrElse(0)Some(currentCount + previousCount)}StreamingExamples.setStreamingLogLevels()  //设置log4j日志级别val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCountStateful")val sc = new StreamingContext(conf, Seconds(5))sc.checkpoint("file:///usr/local/spark/mycode/streaming/dstreamoutput/")    //设置检查点,检查点具有容错机制val lines = sc.socketTextStream("localhost", 9999)val words = lines.flatMap(_.split(" "))val wordDstream = words.map(x => (x, 1))val stateDstream = wordDstream.updateStateByKey[Int](updateFunc)stateDstream.print()//下面是新增的语句,把DStream保存到文本文件中stateDstream.saveAsTextFiles("file:///usr/local/spark/mycode/streaming/dstreamoutput/output.txt")sc.start()sc.awaitTermination()}
}

把DStream写入到MySQL数据库中

mysql> use spark
mysql> create table wordcount (word char(20), count int(4));
mysql> select * from wordcount
//这个时候wordcount表是空的,没有任何记录

NetworkWordCountStateful.scala

import java.sql.{PreparedStatement, Connection, DriverManager}
import java.util.concurrent.atomic.AtomicInteger
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.storage.StorageLevelobject NetworkWordCountStateful {def main(args: Array[String]) {//定义状态更新函数val updateFunc = (values: Seq[Int], state: Option[Int]) => {val currentCount = values.foldLeft(0)(_ + _)val previousCount = state.getOrElse(0)Some(currentCount + previousCount)}val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCountStateful")val sc = new StreamingContext(conf, Seconds(5))sc.checkpoint("file:///usr/local/spark/mycode/streaming/dstreamoutput/")    //设置检查点,检查点具有容错机制val lines = sc.socketTextStream("localhost", 9999)val words = lines.flatMap(_.split(" "))val wordDstream = words.map(x => (x, 1))val stateDstream = wordDstream.updateStateByKey[Int](updateFunc)stateDstream.print()//下面是新增的语句,把DStream保存到MySQL数据库中     stateDstream.foreachRDD(rdd => {//内部函数def func(records: Iterator[(String,Int)]) {var conn: Connection = nullvar stmt: PreparedStatement = nulltry {val url = "jdbc:mysql://localhost:3306/spark"val user = "root"val password = "hadoop"  //笔者设置的数据库密码是hadoop,请改成你自己的mysql数据库密码conn = DriverManager.getConnection(url, user, password)records.foreach(p => {val sql = "insert into wordcount(word,count) values (?,?)"stmt = conn.prepareStatement(sql);stmt.setString(1, p._1.trim)stmt.setInt(2,p._2.toInt)stmt.executeUpdate()})} catch {case e: Exception => e.printStackTrace()} finally {if (stmt != null) {stmt.close()}if (conn != null) {conn.close()}}}val repartitionedRDD = rdd.repartition(3)repartitionedRDD.foreachPartition(func)})sc.start()sc.awaitTermination()}
}

对于stateDstream,为了把它保存到MySQL数据库中,我们采用了如下的形式:

stateDstream.foreachRDD(function)

其中,function就是一个RDD[T]=>Unit类型的函数,对于本程序而言,就是RDD[(String,Int)]=>Unit类型的函数,也就是说,stateDstream中的每个RDD都是RDD[(String,Int)]类型(想象一下,统计结果的形式是(“hadoop”,3))。这样,对stateDstream中的每个RDD都会执行function中的操作(即把该RDD保存到MySQL的操作)。

下面看function的处理逻辑,在function部分,函数体要执行的处理逻辑实际上是下面的形式:

 def func(records: Iterator[(String,Int)]){……}val repartitionedRDD = rdd.repartition(3)repartitionedRDD.foreachPartition(func) 

也就是说,这里定义了一个内部函数func,它的功能是,接收records,然后把records保存到MySQL中。到这里,你可能会有疑问?为什么不是把stateDstream中的每个RDD直接拿去保存到MySQL中,还要调用rdd.repartition(3)对这些RDD重新设置分区数为3呢?这是因为,每次保存RDD到MySQL中,都需要启动数据库连接,如果RDD分区数量太大,那么就会带来多次数据库连接开销,为了减少开销,就有必要把RDD的分区数量控制在较小的范围内,所以,这里就把RDD的分区数量重新设置为3。然后,对于每个RDD分区,就调用repartitionedRDD.foreachPartition(func),把每个分区的数据通过func保存到MySQL中,这时,传递给func的输入参数就是Iterator[(String,Int)]类型的records。如果你不好理解下面这种调用形式:

repartitionedRDD.foreachPartition(func) //这种形式func没有带任何参数,可能不太好理解,不是那么直观

实际上,这句语句和下面的语句是等价的,下面的语句形式你可能会更好理解:

repartitionedRDD.foreachPartition(records => func(records)) 

上面这种等价的形式比较直观,为func()函数传入了一个records参数,这就正好和 def func(records: Iterator[(String,Int)])定义对应起来了,方便理解。


http://www.mrgr.cn/news/5447.html

相关文章:

  • 4170条中医综合真题中医真题ACCESS\EXCEL数据库
  • Java List 结合删除元素的方法
  • 神经网络算法 - 一文搞懂GAN(生成对抗网络)
  • 2408gui,wtl给对话框加快捷键
  • Spring + Boot + Cloud + JDK8 + Elasticsearch 单节点 模式下实现全文检索高亮-分页显示 快速入门案例
  • 查看U盘的具体信息,分区表格式、实际容量和分区状态
  • 100个智能体实战技巧 | 如何让工作流也能处理图片
  • 中兴 5G CPE 3 Pro产品参数
  • Spring Cloud LoadBalancer 源码解析
  • 【UE5.1】NPC人工智能——05 给NPC添加视觉感知
  • 数采网关面临的安全挑战
  • 【3.1】贪心算法-解分发饼干
  • Windows Server查看W3SVC IIS服务器中对应的网站日志
  • centos 7.9 迁移到 openEuler22.03-LTS-SP3
  • 微信小程序电脑端和开发工具端能访问,但是手机端访问不了
  • TypeScript中的接口(Interface):对象类型的强大工具
  • 用py获取显卡的占用率
  • 全套安全帽佩戴检测算法源码与实战应用分享
  • Swift语言服务器协议(LSP)深度解析:开启Swift开发的新篇章
  • JWT-JSON Web Token