当前位置: 首页 > news >正文

超GPT3.5性能,无限长文本,超强RAG三件套,MiniCPM3-4B模型分享

MiniCPM3-4B是由面壁智能与清华大学自然语言处理实验室合作开发的一款高性能端侧AI模型,它是MiniCPM系列的第三代产品,具有4亿参数量。

MiniCPM3-4B模型在性能上超过了Phi-3.5-mini-Instruct和GPT-3.5-Turbo-0125,并且与多款70亿至90亿参数的AI模型相媲美。

MiniCPM3-4B在多项指标上都有显著提升,包括词汇表大小、模型层数和隐藏层节点的增加,使其处理能力更为出色。

MiniCPM3-4B支持32k的上下文窗口设计,理论上可以处理无限的上下文信息,这对于需要处理大量数据和复杂查询的用户来说是一个巨大的优势。

MiniCPM3-4B还支持更高效的代码执行和函数调用,使开发者能够更快速地实现复杂的任务。

此外,面壁智能还发布了针对RAG场景的微调版MiniCPM3-RAG-LoRA模型,以及RAG套件MiniCPM-Embedding模型和MiniCPM-Reranker模型。

github项目地址:https://github.com/OpenBMB/MiniCPM。

一、环境安装

1、python环境

建议安装python版本在3.10以上。

2、pip库安装

pip install torch==2.3.0+cu118 torchvision==0.18.0+cu118 torchaudio==2.3.0 --extra-index-url https://download.pytorch.org/whl/cu118

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install datamodel_code_generator -i https://pypi.tuna.tsinghua.edu.cn/simple

3、MiniCPM3-4B模型下载

git lfs install

git clone https://modelscope.cn/models/OpenBMB/MiniCPM3-4B 4、MiniCPM3-RAG-LoRA模型下载

git lfs install

git clone https://modelscope.cn/models/OpenBMB/MiniCPM3-RAG-LoRA 5、MiniCPM-Reranker模型下载

git lfs install

git clone https://modelscope.cn/models/OpenBMB/MiniCPM-Reranker 6、MiniCPM-Embedding模型下载

git lfs install

git clone https://modelscope.cn/models/OpenBMB/MiniCPM-Embedding

、功能测试

1、运行测试

(1)python代码调用测试

import torch
from modelscope import AutoModelForCausalLM, AutoModel, AutoTokenizer, snapshot_download
from transformers import AutoModelForSequenceClassification
from peft import PeftModel
import torch.nn.functional as F
import numpy as npdef MiniCPM3_4B_inference(message, model_path="OpenBMB/MiniCPM3-4B", device="cuda"):tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)messages = [{"role": "user", "content": message}]model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)model_outputs = model.generate(model_inputs,max_new_tokens=1024,top_p=0.7,temperature=0.7,repetition_penalty=1.02)output_token_ids = [model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))]responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]return responsesdef MiniCPM3_RAG_LoRA_inference(instruction, passages_list, base_model_dir="OpenBMB/MiniCPM3-4B", lora_model_dir="OpenBMB/MiniCPM3-RAG-LoRA"):base_model_dir = snapshot_download(base_model_dir)lora_model_dir = snapshot_download(lora_model_dir)model = AutoModelForCausalLM.from_pretrained(base_model_dir, device_map="auto", torch_dtype=torch.bfloat16).eval()tokenizer = AutoTokenizer.from_pretrained(lora_model_dir)model = PeftModel.from_pretrained(model, lora_model_dir)passages = '\n'.join(passages_list)input_text = 'Background:\n' + passages + '\n\n' + instructionmessages = [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": input_text},]prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)outputs = model.chat(tokenizer, prompt, temperature=0.8, top_p=0.8)return outputs[0]def MiniCPM_Embedding_inference(queries, passages, model_name="OpenBMB/MiniCPM-Embedding", device="cuda"):tokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to(device)model.eval()def weighted_mean_pooling(hidden, attention_mask):attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)d = attention_mask_.sum(dim=1, keepdim=True).float()reps = s / dreturn reps@torch.no_grad()def encode(input_texts):batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt', return_attention_mask=True).to(device)outputs = model(**batch_dict)attention_mask = batch_dict["attention_mask"]hidden = outputs.last_hidden_statereps = weighted_mean_pooling(hidden, attention_mask)embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()return embeddingsINSTRUCTION = "Query: "queries = [INSTRUCTION + query for query in queries]embeddings_query = encode(queries)embeddings_doc = encode(passages)scores = (embeddings_query @ embeddings_doc.T)return scores.tolist()def MiniCPM_Reranker_rerank(queries, passages, model_name='OpenBMB/MiniCPM-Reranker', device="cuda", max_len_q=512, max_len_d=512):model_name = snapshot_download(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)tokenizer.padding_side = "right"model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to(device)model.eval()def tokenize_our(query, doc):input_id_query = tokenizer.encode(query, add_special_tokens=False, max_length=max_len_q, truncation=True)input_id_doc = tokenizer.encode(doc, add_special_tokens=False, max_length=max_len_d, truncation=True)pad_input = {"input_ids": [tokenizer.bos_token_id] + input_id_query + [tokenizer.eos_token_id] + input_id_doc}return tokenizer.pad(pad_input,padding="max_length",max_length=max_len_q + max_len_d + 2,return_tensors="pt",)@torch.no_grad()def rerank(input_query, input_docs):tokenized_inputs = [tokenize_our(input_query, input_doc).to(device) for input_doc in input_docs]input_ids = {"input_ids": [tokenized_input["input_ids"] for tokenized_input in tokenized_inputs],"attention_mask": [tokenized_input["attention_mask"] for tokenized_input in tokenized_inputs]}for k in input_ids:input_ids[k] = torch.stack(input_ids[k]).to(device)outputs = model(**input_ids)score = outputs.logitsreturn score.float().detach().cpu().numpy()INSTRUCTION = "Query: "queries = [INSTRUCTION + query for query in queries]scores = [rerank(query, docs) for query, docs in zip(queries, passages)]return np.array(scores)def main():# Example use casesresponse_4B = MiniCPM3_4B_inference("推荐5个北京的景点。")print(f"MiniCPM3-4B Response: {response_4B}")instruction = "Q: What is the name of the lead character in the novel 'The Silent Watcher'?\nA:"passages_list = ["In the novel 'The Silent Watcher,' the lead character is named Alex Carter. Alex is a private detective who uncovers a series of mysterious events in a small town.","Set in a quiet town, 'The Silent Watcher' follows Alex Carter, a former police officer turned private investigator, as he unravels the town's dark secrets.","'The Silent Watcher' revolves around Alex Carter's journey as he confronts his past while solving complex cases in his hometown."]response_RAG_LoRA = MiniCPM3_RAG_LoRA_inference(instruction, passages_list)print(f"MiniCPM3-RAG-LoRA Response: {response_RAG_LoRA}")queries = ["China capital?"]passages = ["beijing", "shanghai"]scores_embedding = MiniCPM_Embedding_inference(queries, passages)print(f"MiniCPM-Embedding Scores: {scores_embedding}")rerank_queries = ["China capital?"]rerank_passages = [["beijing", "shanghai"]]scores_reranker = MiniCPM_Reranker_rerank(rerank_queries, rerank_passages)print(f"MiniCPM-Reranker Scores: {scores_reranker}")if __name__ == "__main__":main()

未完......

更多详细的欢迎关注:杰哥新技术


http://www.mrgr.cn/news/49696.html

相关文章:

  • Dart的List和Map类型
  • 详细分析 Spring Framework 中的 ConfigurableApplicationContext 和 Environment (附Demo)
  • “printf”函数使用说明
  • 使用 Visual Studio Installer Projects 打包 C# WinForms 程序的教程
  • 怎么确保一个集合不能被修改?
  • 【C++贪心 DFS】2673. 使二叉树所有路径值相等的最小代价|1917
  • Golang | Leetcode Golang题解之第478题在圆内随机生成点
  • [翻译]MOSIP Blue Book
  • Spring Boot、Spring MVC和Spring有什么区别
  • 【最新华为OD机试E卷-支持在线评测】考勤信息(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)
  • <<迷雾>> 第11章 全自动加法计算机(5)--顺序取数 示例电路
  • SpringBoot基础(五):集成JUnit5
  • Oracle AI Vector Search
  • 如何使用Python实现文件的增量备份
  • 台式机来电自启动设置
  • Java | Leetcode Java题解之第477题汉明距离总和
  • 面对配分函数 - 对数似然梯度篇
  • 苹果AI科学家研究证明基于LLM的模型存在缺陷 因为它们无法推理
  • Python | Leetcode Python题解之第478题在圆内随机生成点
  • AI学习指南深度学习篇-迁移学习的基本原理