P4240 毒瘤之神的考验
毒瘤之神的考验 - 洛谷
定义
猜想与
有关
发现上式1-1 上下两边乘gcd(i,j)有
带入1-1有
化简 n<m
经典代换T=ke e=T/k
然后化简不了了
这个时候我们可以把一部分看出一个整体
分析这两个函数,发现f(x) 可以在下预处理出来
g(x,y)有以下递推式
因此也可以在下处理出来
于是莫队
#include <bits/stdc++.h>#define int long long
#define INF (1ll<<60)
#define eps 1e-6
using namespace std;
typedef long long ll;
typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef unsigned long long ull;
typedef vector<vector<int> > vii;
typedef vector<vector<vector<int> > > viii;
typedef vector<ll> vl;
typedef vector<vector<ll> > vll;
typedef vector<double> vd;
typedef vector<vector<double> > vdd;
#define time mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());//稳定随机卡牛魔 ull
const int N = 1e5 + 9;
const int mod = 998244353;
int phi[N], mu[N], vis[N], p[N], cnt;
ll t, ans[N], res;
ll f[N];
int inv[N];
vi g[N], d[N];
int L[N],R[N],pos[N];struct Q {int n, m, id;friend bool operator<(Q x, Q y) {return x.n / t == y.n / t ? ((x.n / t) & 1) ? y.m < x.m : x.m < y.m : x.n < y.n;}
} que[N];void init(int n) {//mu,phimu[1] = 1, phi[1] = 1;for (int i = 2; i <= n; i++) {if (!vis[i]) p[++cnt] = i, mu[i] = -1, phi[i] = i - 1;for (int j = 1; j <= cnt && i * p[j] <= n; j++) {int t = i * p[j];vis[t] = 1;if (i % p[j]) mu[t] = -mu[i], phi[t] = phi[i] * (p[j] - 1);else {phi[t] = phi[i] * p[j];break;}}}//invinv[1] = 1;for (ll i = 2; i <= n; i++) {inv[i] = inv[mod % i] * (mod - mod / i) % mod;}//g(x,y)for (ll i = 1; i <= n; i++) {g[i].resize(n / i + 2);for (ll j = 1; j <= n / i; j++) {//前缀和推出g[i][j] = (g[i][j - 1] + phi[i * j]) % mod;}}//f(x)for (ll i = 1; i <= n; i++) {for (ll j = i; j <= n; j += i) {f[j] = f[j] % mod + i * inv[phi[i]] % mod * mu[j / i] % mod;d[j].push_back(i);//j的约数}}
}void update(ll a, ll b, ll w) {for (ll i = 0; i < d[a].size(); ++i) {res = (res + 1ll * w % mod * phi[a] % mod * g[d[a][i]][b / d[a][i]] % mod * f[d[a][i]] % mod) % mod;}res = (res + mod) % mod;
}signed main() {ios::sync_with_stdio(false);cin.tie(nullptr), cout.tie(nullptr);init(N - 9);int q;cin >> q;t = sqrt(q);for (int i = 1; i <= q; i++) {int n, m;cin >> n >> m;if (n > m) {swap(n, m);}que[i] = {n, m, i};}sort(que + 1, que + 1 + q);ll l = 0, r = 0;for (int i = 1; i <= q; i++) {while (l < que[i].n) update(++l, r, 1);while (r < que[i].m) update(++r, l, 1);while (l > que[i].n) update(l--, r, -1);while (r > que[i].m) update(r--, l, -1);ans[que[i].id] = res % mod;}for (int i = 1; i <= q; i++) {cout << ans[i] << '\n';}return 0;
}
接着推
把两个函数带入2-7可以得到
设整体一个函数有
整除分块得到部分答案
前缀和处理出答案
现在我们有两种方案
1.预处理,
回答 TLE
2.预处理,
回答 MLE+TLE
因此用根号分治来平衡时间
设定一个阈值 k
1.<=t预处理 暴力
2.>t 处理过的整块算 整除分块
最优的k t=1e4 k=47
k=47-500 都能过 还#define int long long 了 !
#include <bits/stdc++.h>
#define int long long
#define INF (1ll<<60)
#define eps 1e-6
using namespace std;
typedef long long ll;
typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef unsigned long long ull;
typedef vector<vector<int> > vii;
typedef vector<vector<vector<int> > > viii;
typedef vector<ll> vl;
typedef vector<vector<ll> > vll;
typedef vector<double> vd;
typedef vector<vector<double> > vdd;
#define time mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());//稳定随机卡牛魔 ull
const int N = 1e5 + 9;
const int mod = 998244353;
const int B = 47;
int phi[N], mu[N], vis[N], p[N], cnt;
int f[N], inv[N];
vi g[N], h[B + 5][B + 5];void add(int &x, int y) { x = x + y >= mod ? x + y - mod : x + y; }void init(int n) {//mu,phimu[1] = 1, phi[1] = 1;for (int i = 2; i <= n; i++) {if (!vis[i]) p[++cnt] = i, mu[i] = -1, phi[i] = i - 1;for (int j = 1; j <= cnt && i * p[j] <= n; j++) {int t = i * p[j];vis[t] = 1;if (i % p[j]) mu[t] = -mu[i], phi[t] = phi[i] * (p[j] - 1);else {phi[t] = phi[i] * p[j];break;}}}//invinv[1] = 1;for (ll i = 2; i <= n; i++) {inv[i] = inv[mod % i] * (mod - mod / i) % mod;}//g(x,y)for (ll i = 1; i <= n; i++) {g[i].resize(n / i + 5);for (ll j = 1; j <= n / i; j++) {//前缀和推出g[i][j] = (g[i][j - 1] + phi[i * j]) % mod;}}//f(x)for (ll i = 1; i <= n; i++) {for (ll j = i; j <= n; j += i) {f[j] = f[j] % mod + i * inv[phi[i]] % mod * mu[j / i] % mod;}}//h(n,m,t)for (int i = 1; i <= B; i++) {for (int j = i; j <= B; j++) {h[i][j].resize(n / j + 5);for (int t = 1; t <= n / j; t++) {h[i][j][t] = (h[i][j][t - 1] + 1ll * f[t] * g[t][i] % mod * g[t][j] % mod) % mod;}}}}signed main() {ios::sync_with_stdio(false);cin.tie(nullptr), cout.tie(nullptr);init(N - 9);auto solve = [&](int n, int m) {if (n > m) {swap(n, m);}int res = 0;//根号分治for (int i = 1; i <= m / B; i++) {add(res, 1ll * f[i] * g[i][n / i] % mod * g[i][m / i] % mod);}for (int l = m / B + 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));add(res, (h[n / l][m / l][r] - h[n / l][m / l][l - 1] + mod) % mod);}return res;};int q;cin >> q;while (q--) {int n, m;cin >> n >> m;cout << solve(n, m) << '\n';}return 0;
}