当前位置: 首页 > news >正文

P4240 毒瘤之神的考验

毒瘤之神的考验 - 洛谷

\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi (ij) \qquad 1-1

定义\varphi (i)=i*\prod_{p|i}^{}\frac{p-1}{p}

猜想\varphi (ij)\varphi (i)\varphi (j)有关

\varphi (ij)=\frac{i*\prod_{p|i}^{}\frac{p-1}{p}*j*\prod_{p|j}^{}\frac{p-1}{p}}{\prod_{p|gcd(i,j)}^{}*\frac{p-1}{p}} \qquad 1-2

\varphi (i)*\varphi(j)=i*\prod_{p|i}^{}*\frac{p-1}{p}*j*\prod_{p|j}^{}*\frac{p-1}{p} \qquad 1-3

发现上式1-1 上下两边乘gcd(i,j)有

\varphi(ij)=\frac{\varphi(i)*\varphi(j)*gcd(i,j)}{\varphi(gcd(i,j))}\qquad 1-4

带入1-1有

\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{\varphi(i)*\varphi(j)*gcd(i,j)}{\varphi(gcd(i,j))}\qquad 2-1

化简 n<m

\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{\varphi(i)*\varphi(j)*k*[gcd(i,j)=k]}{\varphi(k)}\qquad 2-2

\sum_{k=1}^{n}\sum_{ik=1}^{n}\sum_{jk=1}^{m}\frac{\varphi(ik)*\varphi(jk)*k*[gcd(i,j)=1]}{\varphi(k)}\qquad 2-3

\sum_{k=1}^{n}\frac{k}{\varphi(k)}\sum_{i=1}^{n/k}\sum_{j=1}^{m/k}\varphi(ik)*\varphi(jk)*[gcd(i,j)=1]\qquad 2-4

\sum_{k=1}^{n}\frac{k}{\varphi(k)}\sum_{e=1}^{n/k}\sum_{ie=1}^{n/k}\sum_{je=1}^{m/k}\varphi(ike)*\varphi(jke)*\mu (e)\qquad 2-5

\sum_{k=1}^{n}\frac{k}{\varphi(k)}\sum_{e=1}^{n/k}\sum_{i=1}^{n/ke}\sum_{j=1}^{m/ke}\varphi(ike)*\varphi(jke)*\mu (e)\qquad 2-6

经典代换T=ke  e=T/k

\sum_{T=1}^{n}\sum_{k|T}^{}\frac{k}{\varphi(k)}*\mu (\frac{T}{k})\sum_{i=1}^{n/T}\sum_{j=1}^{m/T}\varphi(iT)*\varphi(jT)\qquad 2-7

然后化简不了了

这个时候我们可以把一部分看出一个整体

f(x)=\sum_{k|x}^{}\frac{k*\mu(\frac{x}{k})}{\varphi(k)}\qquad 2-8

g(x,y)=\sum_{i=1}^{y}\varphi(ix) \qquad2-9-1

分析这两个函数,发现f(x) 可以在O(nlnn)下预处理出来

g(x,y)有以下递推式

g(x,y)=g(x-1,y)+\varphi(xy)\qquad 2-9-2 

因此也可以在O(nlnn)下处理出来

于是莫队O(nlnn+qsqrt(n)lnn)

#include <bits/stdc++.h>#define int long long
#define INF (1ll<<60)
#define eps 1e-6
using namespace std;
typedef long long ll;
typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef unsigned long long ull;
typedef vector<vector<int> > vii;
typedef vector<vector<vector<int> > > viii;
typedef vector<ll> vl;
typedef vector<vector<ll> > vll;
typedef vector<double> vd;
typedef vector<vector<double> > vdd;
#define time mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());//稳定随机卡牛魔 ull
const int N = 1e5 + 9;
const int mod = 998244353;
int phi[N], mu[N], vis[N], p[N], cnt;
ll t, ans[N], res;
ll f[N];
int inv[N];
vi g[N], d[N];
int L[N],R[N],pos[N];struct Q {int n, m, id;friend bool operator<(Q x, Q y) {return x.n / t == y.n / t ? ((x.n / t) & 1) ? y.m < x.m : x.m < y.m : x.n < y.n;}
} que[N];void init(int n) {//mu,phimu[1] = 1, phi[1] = 1;for (int i = 2; i <= n; i++) {if (!vis[i]) p[++cnt] = i, mu[i] = -1, phi[i] = i - 1;for (int j = 1; j <= cnt && i * p[j] <= n; j++) {int t = i * p[j];vis[t] = 1;if (i % p[j]) mu[t] = -mu[i], phi[t] = phi[i] * (p[j] - 1);else {phi[t] = phi[i] * p[j];break;}}}//invinv[1] = 1;for (ll i = 2; i <= n; i++) {inv[i] = inv[mod % i] * (mod - mod / i) % mod;}//g(x,y)for (ll i = 1; i <= n; i++) {g[i].resize(n / i + 2);for (ll j = 1; j <= n / i; j++) {//前缀和推出g[i][j] = (g[i][j - 1] + phi[i * j]) % mod;}}//f(x)for (ll i = 1; i <= n; i++) {for (ll j = i; j <= n; j += i) {f[j] = f[j] % mod + i * inv[phi[i]] % mod * mu[j / i] % mod;d[j].push_back(i);//j的约数}}
}void update(ll a, ll b, ll w) {for (ll i = 0; i < d[a].size(); ++i) {res = (res + 1ll * w % mod * phi[a] % mod * g[d[a][i]][b / d[a][i]] % mod * f[d[a][i]] % mod) % mod;}res = (res + mod) % mod;
}signed main() {ios::sync_with_stdio(false);cin.tie(nullptr), cout.tie(nullptr);init(N - 9);int q;cin >> q;t = sqrt(q);for (int i = 1; i <= q; i++) {int n, m;cin >> n >> m;if (n > m) {swap(n, m);}que[i] = {n, m, i};}sort(que + 1, que + 1 + q);ll l = 0, r = 0;for (int i = 1; i <= q; i++) {while (l < que[i].n) update(++l, r, 1);while (r < que[i].m) update(++r, l, 1);while (l > que[i].n) update(l--, r, -1);while (r > que[i].m) update(r--, l, -1);ans[que[i].id] = res % mod;}for (int i = 1; i <= q; i++) {cout << ans[i] << '\n';}return 0;
}

接着推

把两个函数带入2-7可以得到

\sum_{T=1}^{n}f(T)*g(T,n/T)*g(T,m/T) \qquad 3-1

设整体一个函数有

h(n,m,T)=\sum_{k=1}^{T}f(k)*g(k,n/k)*g(k,m/k) \qquad 3-1-1

整除分块得到部分答案

h(n,m,r)-h(n,m,l-1)=ansi\qquad 3-1-2

O(n^{2}lnn)前缀和处理出答案

h(n,m,x)=h(n,m,x-1)+f(x)*g(x,n/x)*g(x,m/x) \,3-2 

现在我们有两种方案

1.O(nlnn)预处理,O(n)回答  TLE

2.O(n^{2}lnn)预处理,O(sqrt(n)) 回答 MLE+TLE

因此用根号分治来平衡时间

设定一个阈值 k

1.<=t预处理  暴力 O(nlnn+\frac{tn}{k})

2.>t 处理过的整块算 整除分块 O(nklnk+tsqrt(n))

最优的k  (klnk+\frac{t}{k})min  t=1e4 k=47

k=47-500 都能过 还#define int long long 了 !   

#include <bits/stdc++.h>
#define int long long
#define INF (1ll<<60)
#define eps 1e-6
using namespace std;
typedef long long ll;
typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef unsigned long long ull;
typedef vector<vector<int> > vii;
typedef vector<vector<vector<int> > > viii;
typedef vector<ll> vl;
typedef vector<vector<ll> > vll;
typedef vector<double> vd;
typedef vector<vector<double> > vdd;
#define time mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count());//稳定随机卡牛魔 ull
const int N = 1e5 + 9;
const int mod = 998244353;
const int B = 47;
int phi[N], mu[N], vis[N], p[N], cnt;
int f[N], inv[N];
vi g[N], h[B + 5][B + 5];void add(int &x, int y) { x = x + y >= mod ? x + y - mod : x + y; }void init(int n) {//mu,phimu[1] = 1, phi[1] = 1;for (int i = 2; i <= n; i++) {if (!vis[i]) p[++cnt] = i, mu[i] = -1, phi[i] = i - 1;for (int j = 1; j <= cnt && i * p[j] <= n; j++) {int t = i * p[j];vis[t] = 1;if (i % p[j]) mu[t] = -mu[i], phi[t] = phi[i] * (p[j] - 1);else {phi[t] = phi[i] * p[j];break;}}}//invinv[1] = 1;for (ll i = 2; i <= n; i++) {inv[i] = inv[mod % i] * (mod - mod / i) % mod;}//g(x,y)for (ll i = 1; i <= n; i++) {g[i].resize(n / i + 5);for (ll j = 1; j <= n / i; j++) {//前缀和推出g[i][j] = (g[i][j - 1] + phi[i * j]) % mod;}}//f(x)for (ll i = 1; i <= n; i++) {for (ll j = i; j <= n; j += i) {f[j] = f[j] % mod + i * inv[phi[i]] % mod * mu[j / i] % mod;}}//h(n,m,t)for (int i = 1; i <= B; i++) {for (int j = i; j <= B; j++) {h[i][j].resize(n / j + 5);for (int t = 1; t <= n / j; t++) {h[i][j][t] = (h[i][j][t - 1] + 1ll * f[t] * g[t][i] % mod * g[t][j] % mod) % mod;}}}}signed main() {ios::sync_with_stdio(false);cin.tie(nullptr), cout.tie(nullptr);init(N - 9);auto solve = [&](int n, int m) {if (n > m) {swap(n, m);}int res = 0;//根号分治for (int i = 1; i <= m / B; i++) {add(res, 1ll * f[i] * g[i][n / i] % mod * g[i][m / i] % mod);}for (int l = m / B + 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));add(res, (h[n / l][m / l][r] - h[n / l][m / l][l - 1] + mod) % mod);}return res;};int q;cin >> q;while (q--) {int n, m;cin >> n >> m;cout << solve(n, m) << '\n';}return 0;
}

http://www.mrgr.cn/news/42846.html

相关文章:

  • 杀毒软件原理
  • kubeadm部署k8s
  • flutter_鸿蒙next_Dart基础③函数
  • 计算机网络——应用层
  • 【Qt】控件概述(2)—— 按钮类控件
  • Java LeetCode 练习
  • Qt自定义控件:雷达扫描
  • 155. 最小栈
  • java相关新技术
  • isinstance()学习
  • 《计算机原理与系统结构》学习系列
  • idea创建springboot模块
  • 在 ArkTS 网络请求中,重新封装一下 http 模块
  • pWnOS2.0 靶机渗透( cms 渗透,php+mysql 网站渗透,密码碰撞)
  • 业务封装与映射 -- 映射方式
  • 排序算法之选择排序
  • 分布式学习02-CAP理论
  • Linux进程控制(2)(进程程序替换1)
  • 【3D目标检测】激光雷达和相机联合标定(一)——ROS同步解包
  • python学习记录6