当前位置: 首页 > news >正文

【论文阅读33】Deep learning optoacoustic tomography with sparse data

Deep learning optoacoustic tomography with sparse data

论文题目:基于稀疏数据的深度学习光声断层扫描

论文链接:Deep learning optoacoustic tomography with sparse data | Nature Machine Intelligence

代码链接:GitHub - ndavoudi/sparse_artefact_unet

数据链接:Data

发表时间:2019

发表期刊:nature machine intelligence

---摘要---

光声(光声)成像和层析成像领域正迅速发展,这一发展是由对分辨率、速度、灵敏度、深度和对比度方面更好成像性能的不断需求所驱动的。在实践中,数据采集策略通常涉及对断层扫描数据的次优采样,导致不可避免的性能权衡和图像质量下降。本文提出了一个新的框架,基于深度卷积神经网络,从稀疏的光声数据中高效恢复图像质量,并展示了其在小鼠全身体内成像中的性能。为了生成用于最佳训练的准确高分辨率参考图像,设计了一种全视图断层扫描仪,能够从活体小鼠中获得优越的横截面图像质量。当提供从大量欠采样数据或有限视图扫描重建的图像时,训练好的网络能够增强任意方向结构的可见性,并恢复预期的图像质量。值得注意的是,该网络还消除了从密集采样数据生成的参考图像中的一些重建伪影。当使用合成或体膜数据进行训练时,没有实现相当的增益,这强调了使用全视图扫描仪获取的高质量体内图像进行训练的重要性。这种新方法可以通过减轻常见图像伪影、增强解剖对比度和图像量化能力、加速数据采集和图像重建方法,同时也促进了实用和负担得起的成像系统的发展,从而惠及众多光声成像应用。建议的方法仅在图像域数据上操作,因此可以无缝应用于用其他模态重建的伪影图像。

---方法---

图1 | 基于U-Net架构的深度卷积神经网络方法,用于在OA成像中去除欠采样数据的伪影。 a, 光声断层成像图像构建原理的示意图。 b, 使用2D滤波反投影算法,对具有不同数量检测位置(投影)的单点吸收体进行断层重建的数值模拟。 c, 对更复杂的数值体膜进行相应的重建。 d, U-Net网络架构,由收缩(下采样)和扩张(上采样)路径组成。 e, 经过与模拟数


http://www.mrgr.cn/news/3849.html

相关文章:

  • 78.内存对齐
  • Java二十三种设计模式-解释器模式(23/23)
  • 深入理解命令模式:设计模式中的行为型模式解析
  • 揭秘面试必备:高频算法与面试题全面解析
  • turtle画图知识
  • “职场加速器:高频面试题与算法精讲”
  • 【C语言小项目】五子棋游戏
  • vue3中实现给pdf加盖公章(手动拖拽公章确认位置)
  • 基于STM32F103的FreeRTOS系列(十一)·信号量·二值信号量与计数信号量详细使用以及移植教程
  • 使用Go env命令设置Go的环境
  • 招生简章哪里可以免费上传
  • CF1929F
  • 基于协同过滤算法的体育商品推荐系统_t81xg
  • 二叉树剪枝
  • 2-72 基于matlab的平稳小波变换进行多聚焦图像融合
  • 【Spring进阶】掌握Spring框架核心注解:从基础到实战应用(Spring深度解析)
  • Linux rocky 9.2 安装mysql-8.0.39-linux-glibc2.28-x86_64.tar.xz
  • Java | Leetcode Java题解之第357题统计各位数字都不同的数字个数
  • JVM类加载机制—JVM类加载过程
  • hw001:求1-n的最小公倍数