【python进阶攻略6】装饰器2
带参数的装饰器
来想想这个问题,难道@wraps
不也是个装饰器吗?但是,它接收一个参数,就像任何普通的函数能做的那样。那么,为什么我们不也那样做呢?
这是因为,当你使用@my_decorator
语法时,你是在应用一个以单个函数作为参数的一个包裹函数。记住,Python里每个东西都是一个对象,而且这包括函数!记住了这些,我们可以编写一下能返回一个包裹函数的函数。
在函数中嵌入装饰器
我们回到日志的例子,并创建一个包裹函数,能让我们指定一个用于输出的日志文件。
from functools import wrapsdef logit(logfile='out.log'):def logging_decorator(func):@wraps(func)def wrapped_function(*args, **kwargs):log_string = func.__name__ + " was called"print(log_string)# 打开logfile,并写入内容with open(logfile, 'a') as opened_file:# 现在将日志打到指定的logfileopened_file.write(log_string + '\n')return func(*args, **kwargs)return wrapped_functionreturn logging_decorator@logit()
def myfunc1():passmyfunc1()
# Output: myfunc1 was called
# 现在一个叫做 out.log 的文件出现了,里面的内容就是上面的字符串@logit(logfile='func2.log')
def myfunc2():passmyfunc2()
# Output: myfunc2 was called
# 现在一个叫做 func2.log 的文件出现了,里面的内容就是上面的字符串
装饰器类
现在我们有了能用于正式环境的logit
装饰器,但当我们的应用的某些部分还比较脆弱时,异常也许是需要更紧急关注的事情。比方说有时你只想打日志到一个文件。而有时你想把引起你注意的问题发送到一个email,同时也保留日志,留个记录。这是一个使用继承的场景,但目前为止我们只看到过用来构建装饰器的函数。
幸运的是,类也可以用来构建装饰器。那我们现在以一个类而不是一个函数的方式,来重新构建logit
。
from functools import wrapsclass logit(object):def __init__(self, logfile='out.log'):self.logfile = logfiledef __call__(self, func):@wraps(func)def wrapped_function(*args, **kwargs):log_string = func.__name__ + " was called"print(log_string)# 打开logfile并写入with open(self.logfile, 'a') as opened_file:# 现在将日志打到指定的文件opened_file.write(log_string + '\n')# 现在,发送一个通知self.notify()return func(*args, **kwargs)return wrapped_functiondef notify(self):# logit只打日志,不做别的pass
这个实现有一个附加优势,在于比嵌套函数的方式更加整洁,而且包裹一个函数还是使用跟以前一样的语法:
@logit()
def myfunc1():pass
现在,我们给logit
创建子类,来添加email的功能(虽然email这个话题不会在这里展开)。
class email_logit(logit):'''一个logit的实现版本,可以在函数调用时发送email给管理员'''def __init__(self, email='admin@myproject.com', *args, **kwargs):self.email = emailsuper(email_logit, self).__init__(*args, **kwargs)def notify(self):# 发送一封email到self.email# 这里就不做实现了pass
从现在起,@email_logit
将会和@logit
产生同样的效果,但是在打日志的基础上,还会多发送一封邮件给管理员。