当前位置: 首页 > news >正文

机器学习 第12章 计算学习理论

目录

  • 基础知识
  • PAC学习
  • 有限假设空间
    • 可分情形
    • 不可分情形
  • VC维
  • Rademacher复杂度
  • 稳定性

基础知识

计算学习理论研究的是关于通过"计算"来进行"学习"的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。
给定样例集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x m , y m ) } D=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} D={(x1,y1),(x2,y2),,(xm,ym)}, x i ϵ χ x_{i}\epsilon \chi xiϵχ,假设 χ \chi χ中的所有样本服从一个隐含未知的分布 D \mathcal{D} D, D 中所有样本都是独立地从这个分布上采样而得.

PAC学习

计算学习理论中最基本的是概率近似正确 (Probably Approximately Correct,简称 PAC)学习理论 。下面介绍几个定义

定义1:PAC辨识:对 0 < ϵ 0<\epsilon 0<ϵ, δ < 1 \delta <1 δ<1,所有 c ϵ C c\epsilon \mathcal{C} C和分布 D \mathcal{D} D,若存在学习算法 ς \varsigma ς,其输出假设 h ϵ H h\epsilon \mathcal{H} hϵH满足 P ( E ( h ) ≤ ϵ ) ≥ 1 − δ P(E(h)\le \epsilon )\ge 1-\delta P(E(h)ϵ)1δ,则称学习算法 ς \varsigma ς能从假设空间中PAC辨识概念类 C \mathrm {} C C
定义2:PAC可学习:令m表示从分布D中独立同分布采样得到的样例数目, 0 < ϵ 0<\epsilon 0<ϵ, δ < 1 \delta <1 δ<1,对所有分布T,若存在学习算法 L \mathcal{L} L和多项式函数poly(…),使得对任何 m ≥ p o l y ( 1 / ϵ , 1 / δ , s i z e ( x ) , s i z e ( c ) ) m\ge poly\left ( 1/\epsilon ,1/\delta ,size\left ( x \right ),size\left ( c \right ) \right ) mpoly(1/ϵ,1/δ,size(x),size(c)), L \mathcal{L} L能从假设空间 H \mathcal{H} H中PAC辨识概念类 C \mathcal{C} C,则称概念类 C \mathcal{C} C对假设空间而言是PAC可学习的。

PAC 学习中一个关键因素是假设空间 H \mathcal{H} H的复杂度。 H \mathcal{H} H包含了学习算法 ε \varepsilon ε所有可能输出的假设,若在PAC学习中假设空间与概念类完全相同,即 H \mathcal{H} H= C \mathcal{C} C,这称为"恰PAC可学习",这意味着学习算法的能力与学习任务"恰好匹配"。

有限假设空间

有限假设空间是指假设空间中的假设数目是有限的。在这种情况下,可以更容易地分析学习算法的表现。对于有限假设空间,根据是否能找到一个假设完全匹配训练数据,可以分为可分情形和不可分情形。

可分情形

在机器学习中,“可分情形”指的是存在一个假设(即学习算法中的模型)可以在训练数据集上达到零误差,即这个假设能够完全正确地标记所有训练样本。当这种情况发生时,我们说训练数据集对于这个假设空间是“可分的”。

在可分情形下,学习算法的目标是找到这个假设,也就是找到一个决策边界或分类规则,使得所有训练样本都能够被正确分类。例如,在二分类问题中,如果存在一条超平面(在高维空间中也称为超平面)能够完美地将两类数据分开,那么这个问题就是线性可分的。
判断数据集是否线性可分可以通过以下几种方法:
可视化: 如果数据集维度较低(如二维或三维),可以通过绘制数据集的散点图来直观地判断是否线性可分6。
SVM: 使用支持向量机(Support Vector Machine, SVM),如果SVM能够在训练数据集中找到一个超平面,使得所有正类和负类的点都能够被正确分类,那么这个数据集就是线性可分的。

在可分情形下,学习算法的目标非常明确,就是要找到一个能够在训练集上达到零误差的假设。这种情况下,学习算法通常会表现得非常好,因为它不需要处理噪声或异常值所带来的影响。然而,值得注意的是,在实际应用中,数据往往含有噪声或不一致之处,因此很少能够遇到真正的可分情形,更多的是处理不可分情形,这时就需要引入如正则化等技术来改善模型的泛化能力。

不可分情形

VC维

Rademacher复杂度

稳定性


http://www.mrgr.cn/news/24450.html

相关文章:

  • ‌移动管家手机智能控制汽车系统
  • 说说精益生产管理咨询公司排名的那些事
  • 【C++】——string
  • 实验十一 Java的网络应用
  • 【HarmonyOS】多媒体技术
  • 【Go】Go语言中的基本数据类型与类型转换
  • ES6标准---【四】【学习ES6标准看这一篇就够了!!!】
  • 线性规划优化:单纯形法
  • 四款音频剪辑软件免费使用,你更pick哪一个?
  • 会话好友区设计与开发(一)
  • docker镜像下载代理
  • linux ubuntu编译 openjdk11
  • 揭秘谷歌七年AI机器人研发之路
  • 小程序——生命周期
  • 哪些旋转机械会用到本特利振动传感器
  • Assignment
  • Meme“淘金”热潮下:Meme发射平台的安全风险分析
  • 果蔬识别系统性能优化之路(一)
  • appium server gui详细按照步骤
  • Mongodb Error: queryTxt ETIMEOUT xxxx.wwwdz.mongodb.net