机器学习 第12章 计算学习理论
目录
- 基础知识
- PAC学习
- 有限假设空间
- 可分情形
- 不可分情形
- VC维
- Rademacher复杂度
- 稳定性
基础知识
计算学习理论研究的是关于通过"计算"来进行"学习"的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。
给定样例集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x m , y m ) } D=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{m}, y_{m}\right)\right\} D={(x1,y1),(x2,y2),…,(xm,ym)}, x i ϵ χ x_{i}\epsilon \chi xiϵχ,假设 χ \chi χ中的所有样本服从一个隐含未知的分布 D \mathcal{D} D, D 中所有样本都是独立地从这个分布上采样而得.
PAC学习
计算学习理论中最基本的是概率近似正确 (Probably Approximately Correct,简称 PAC)学习理论 。下面介绍几个定义
定义1:PAC辨识:对 0 < ϵ 0<\epsilon 0<ϵ, δ < 1 \delta <1 δ<1,所有 c ϵ C c\epsilon \mathcal{C} cϵC和分布 D \mathcal{D} D,若存在学习算法 ς \varsigma ς,其输出假设 h ϵ H h\epsilon \mathcal{H} hϵH满足 P ( E ( h ) ≤ ϵ ) ≥ 1 − δ P(E(h)\le \epsilon )\ge 1-\delta P(E(h)≤ϵ)≥1−δ,则称学习算法 ς \varsigma ς能从假设空间中PAC辨识概念类 C \mathrm {} C C
定义2:PAC可学习:令m表示从分布D中独立同分布采样得到的样例数目, 0 < ϵ 0<\epsilon 0<ϵ, δ < 1 \delta <1 δ<1,对所有分布T,若存在学习算法 L \mathcal{L} L和多项式函数poly(…),使得对任何 m ≥ p o l y ( 1 / ϵ , 1 / δ , s i z e ( x ) , s i z e ( c ) ) m\ge poly\left ( 1/\epsilon ,1/\delta ,size\left ( x \right ),size\left ( c \right ) \right ) m≥poly(1/ϵ,1/δ,size(x),size(c)), L \mathcal{L} L能从假设空间 H \mathcal{H} H中PAC辨识概念类 C \mathcal{C} C,则称概念类 C \mathcal{C} C对假设空间而言是PAC可学习的。
PAC 学习中一个关键因素是假设空间 H \mathcal{H} H的复杂度。 H \mathcal{H} H包含了学习算法 ε \varepsilon ε所有可能输出的假设,若在PAC学习中假设空间与概念类完全相同,即 H \mathcal{H} H= C \mathcal{C} C,这称为"恰PAC可学习",这意味着学习算法的能力与学习任务"恰好匹配"。
有限假设空间
有限假设空间是指假设空间中的假设数目是有限的。在这种情况下,可以更容易地分析学习算法的表现。对于有限假设空间,根据是否能找到一个假设完全匹配训练数据,可以分为可分情形和不可分情形。
可分情形
在机器学习中,“可分情形”指的是存在一个假设(即学习算法中的模型)可以在训练数据集上达到零误差,即这个假设能够完全正确地标记所有训练样本。当这种情况发生时,我们说训练数据集对于这个假设空间是“可分的”。
在可分情形下,学习算法的目标是找到这个假设,也就是找到一个决策边界或分类规则,使得所有训练样本都能够被正确分类。例如,在二分类问题中,如果存在一条超平面(在高维空间中也称为超平面)能够完美地将两类数据分开,那么这个问题就是线性可分的。
判断数据集是否线性可分可以通过以下几种方法:
可视化: 如果数据集维度较低(如二维或三维),可以通过绘制数据集的散点图来直观地判断是否线性可分6。
SVM: 使用支持向量机(Support Vector Machine, SVM),如果SVM能够在训练数据集中找到一个超平面,使得所有正类和负类的点都能够被正确分类,那么这个数据集就是线性可分的。
在可分情形下,学习算法的目标非常明确,就是要找到一个能够在训练集上达到零误差的假设。这种情况下,学习算法通常会表现得非常好,因为它不需要处理噪声或异常值所带来的影响。然而,值得注意的是,在实际应用中,数据往往含有噪声或不一致之处,因此很少能够遇到真正的可分情形,更多的是处理不可分情形,这时就需要引入如正则化等技术来改善模型的泛化能力。