超声波 HC-SR04 的使用 CubeMx + STM32F103C8T6 【含两个】
HC-SR04 的使用
- 一、超声波模块介绍
- 二、工作原理介绍
- 三、接线方式
- 四、驱动方式
- 方法一
- 方法二
- 五、程序实现
- 串口查看数据
- 方法一
- HC_SR04.c
- HC_SR04.h
- main.c
- main.h
- 串口数据显示
- 方法二
- main.c
- main.h
- 六、 数据处理
一、超声波模块介绍
HC-SR04 是一种常用的超声波测距模块。它通过发射超声波并测量这些波反射回来的时间来计算距离。模块的基本结构包括一个超声波发射器和一个接收器。发射器发出高频超声波,当这些波遇到物体后反射回来,接收器接收到这些反射波。根据超声波的传播时间和声速,模块可以计算出到物体的距离。它通常用于测距、避障等应用中。
用的是这两款 第二款功能更多 不贴电阻 和上面这款没差别
二、工作原理介绍
三、接线方式
VCC–5V/3.3v【网上有看到一定得是5v 根据自己使用的模块来】
GND–GND
Trig – 板子上的OUTPUT引脚(用来发射超声波信号)
Echo-- 板子上的INPUT引脚(用来接收返回的超声波信号)
四、驱动方式
方法一
使用普通两个io 接Trig【OUTPUT】和Echo【INPUT】 外用一个定时器计数【开中断】
【不需要开自动重装载吗?】
方法二
使用双超声波
Trig使用普通io【OUTPUT】,Echo 使用定时器输入捕获功能 并开中断
五、程序实现
串口查看数据
头文件:#include “stdio.h”
ps:如果只使用串口功能 不需要开中断
int fputc(int c,FILE* s)
{HAL_UART_Transmit(&huart1,(const uint8_t*)&c,1,0xFFFF );return c;
}
方法一
HC_SR04.c
#include "main.h"
#include "HC_SR04.h"
#include "stm32f1xx_hal.h"
#include "stm32f1xx_it.h"
#include "gpio.h"
static float distance_result;
/*
*********************************************************
函数原型:void Delay_us(uint16_t time)
函数输入:无符号整形
函数输出:无
函数功能:利用定时器实现微秒级延时
*********************************************************
*/
void Delay_us(uint16_t time)
{uint16_t a1=TIM2->CNT;while(TIM2->CNT-a1<time);
}
/*
*********************************************************
函数原型:void HC_SR04_startrange(void)
函数输入:无
函数输出:无
函数功能:从trig引脚生成一个不小于10us的高电平触发测距,触发后模块自动产生8个40kHz方波,自动检测是否有信号返回
*********************************************************
*/
void HC_SR04_startrange(void)
{HAL_GPIO_WritePin(HC_SR04_Trig_Pin_GPIO_Port,HC_SR04_Trig_Pin_Pin,GPIO_PIN_SET);//HAL_Delay(5);Delay_us(10);HAL_GPIO_WritePin(HC_SR04_Trig_Pin_GPIO_Port,HC_SR04_Trig_Pin_Pin,GPIO_PIN_RESET);}
/*
*********************************************************
函数原型:uint16_t HC_SR04_gettime(void)
函数输入:无
函数输出:无符号整型
函数功能:通过定时器获取当前时间
*********************************************************
*/
uint16_t HC_SR04_gettime(void)
{uint32_t a;a=TIM2->CNT;return a;
}
/*
*********************************************************
函数原型:float HC_SR04_getdistance(void)
函数输入:无
函数输出:浮点型
函数功能:获取与目标之间的距离
*********************************************************
*/
float HC_SR04_getdistance(void)
{ uint16_t time_node1;uint16_t time_node2;uint16_t measure;HC_SR04_startrange();TIM2->CNT = 0;//有信号返回则通过IO口Echo输出高电平,高电平持续时间即为超声波从发射到返回的时间,测试距离=( 高电平时间*声速(340m/s) )/ 2 while(HAL_GPIO_ReadPin(HC_SR04_Echo_Pin_GPIO_Port,HC_SR04_Echo_Pin_Pin)==RESET);time_node1=HC_SR04_gettime();while(HAL_GPIO_ReadPin(HC_SR04_Echo_Pin_GPIO_Port,HC_SR04_Echo_Pin_Pin)==SET);time_node2=HC_SR04_gettime();measure=time_node2-time_node1;distance_result = measure * 17.0/1000;//距离=计数差值(us) / 1000000 * 340(m/s) * 100 / 2 = measure * 17/1000return distance_result;
}
HC_SR04.h
#ifndef _HC_SR04_H_
#define _HC_SR04_H_#include "main.h"
void Delay_us(uint16_t time);
void HC_SR04_startrange(void);
float HC_SR04_getdistance(void);
uint16_t HC_SR04_gettime(void);
#endif
main.c
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "HC_SR04.h"
#include "stdio.h"/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV */
int fputc(int c,FILE* s)
{HAL_UART_Transmit(&huart1,(const uint8_t*)&c,1,0xFFFF );return c;
}/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 *//**************************************************************************///平滑数据处理
//使用平滑算法(如移动平均)来减少数据的波动。这样可以让测得的距离值更稳定。/**************************************************************************/#define SMOOTHING_FACTOR 7 // 平滑的历史值数量float smooth_dist(int current_dist) {static float history[SMOOTHING_FACTOR] = {0};static int index = 0;static int count = 0;float sum = 0;history[index] = current_dist;index = (index + 1) % SMOOTHING_FACTOR;if (count < SMOOTHING_FACTOR) count++;for (int i = 0; i < count; i++) {sum += history[i];}return sum / count;
}
/* USER CODE END 0 *//*** @brief The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 */float HC_SR04_distance = 0 ;/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM2_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */HAL_TIM_Base_Start_IT(&htim2);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */HC_SR04_distance=HC_SR04_getdistance();HC_SR04_distance= smooth_dist(HC_SR04_distance);HAL_GPIO_WritePin(GPIOC,GPIO_PIN_13,GPIO_PIN_RESET);//开灯printf("有人,目前距离为:%.2f cm\r\n",HC_SR04_distance);HAL_Delay(100);/* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}
main.h
#define LED_Pin GPIO_PIN_13
#define LED_GPIO_Port GPIOC
#define HC_SR04_Trig_Pin_Pin GPIO_PIN_4
#define HC_SR04_Trig_Pin_GPIO_Port GPIOB
#define HC_SR04_Echo_Pin_Pin GPIO_PIN_5
#define HC_SR04_Echo_Pin_GPIO_Port GPIOB
串口数据显示
方法二
main.c
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "string.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t TIM2CH1_CAPTURE_STA; //输入捕获状态
uint16_t TIM2CH1_CAPTURE_VAL; //输入捕获值
uint8_t TIM3CH1_CAPTURE_STA; //输入捕获状态
uint16_t TIM3CH1_CAPTURE_VAL; //输入捕获值
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV */
int fputc(int c,FILE* s)
{HAL_UART_Transmit(&huart1,(const uint8_t*)&c,1,0xFFFF );return c;
}/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 *//* USER CODE END 0 *//*** @brief The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 */float len=0;uint16_t dis = 0;uint32_t time=0;float len3=0;uint16_t dis3 = 0;uint32_t time3=0;/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM2_Init();MX_TIM3_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */HAL_TIM_IC_Start_IT(&htim2,TIM_CHANNEL_1); //开启TIM2的捕获通道1,并且开启捕获中断HAL_TIM_IC_Start_IT(&htim3,TIM_CHANNEL_1); //开启TIM3的捕获通道1,并且开启捕获中断__HAL_TIM_ENABLE_IT(&htim2,TIM_IT_UPDATE); //使能更新中断__HAL_TIM_ENABLE_IT(&htim3,TIM_IT_UPDATE); //使能更新中断/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE *///printf("123\r\n");while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */ch1_capture(); ch3_capture(); //printf("TIM2 Capture STA: %02X\n", TIM2CH1_CAPTURE_STA);if(TIM2CH1_CAPTURE_STA&0X80) //成功捕获到了一次高电平{time=TIM2CH1_CAPTURE_STA&0X3F; time*=65536; //溢出时间总和time+=TIM2CH1_CAPTURE_VAL; //得到总的高电平时间len=time*0.17;dis = (uint16_t)len;printf("v1=%d\r\n",dis); // while(HAL_OK != HAL_UART_Transmit(&huart1, (uint8_t *)str, strlen(str), 5000));TIM2CH1_CAPTURE_STA=0; //开启下一次捕获}if(TIM3CH1_CAPTURE_STA&0X80) //成功捕获到了一次高电平{time3=TIM3CH1_CAPTURE_STA&0X3F; time3*=65536; //溢出时间总和time3+=TIM3CH1_CAPTURE_VAL; //得到总的高电平时间len3=time3*0.17;dis3 = (uint16_t)len3;printf("v2=%d\r\n",dis3); // sprintf(str3,"v2=%d\r\n",dis3); // while(HAL_OK != HAL_UART_Transmit(&huart1, (uint8_t *)str3, strlen(str3), 5000));TIM3CH1_CAPTURE_STA=0; //开启下一次捕获}HAL_Delay(100);}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 */
void ch1_capture(void)
{ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET); delay_us(20);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET);
}void ch3_capture(void)
{ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_SET); delay_us(20);HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_RESET);
}void delay_us(uint32_t us)
{// 预计算循环次数,根据你的处理器频率调整volatile uint32_t count;while (us-- > 0){count = 8; // 根据处理器频率和指令执行时间调整while (count-- > 0);}
}//定时器更新中断(计数溢出)中断处理回调函数, 该函数在HAL_TIM_IRQHandler中会被调用
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)//更新中断(溢出)发生时执行
{if(htim->Instance == htim2.Instance){if((TIM2CH1_CAPTURE_STA&0X80)==0) //还未成功捕获上升沿{if(TIM2CH1_CAPTURE_STA&0X40) //已经捕获到高电平了{if((TIM2CH1_CAPTURE_STA&0X3F)==0X3F) //高电平太长了{TIM2CH1_CAPTURE_STA|=0X80; //标记成功捕获了一次TIM2CH1_CAPTURE_VAL=0XFFFF;}else TIM2CH1_CAPTURE_STA++;} } }if(htim->Instance == htim3.Instance){if((TIM3CH1_CAPTURE_STA&0X80)==0) //还未成功捕获上升沿{if(TIM3CH1_CAPTURE_STA&0X40) //已经捕获到高电平了{if((TIM3CH1_CAPTURE_STA&0X3F)==0X3F) //高电平太长了{TIM3CH1_CAPTURE_STA|=0X80; //标记成功捕获了一次TIM3CH1_CAPTURE_VAL=0XFFFF;}else TIM3CH1_CAPTURE_STA++;} } }
}//定时器输入捕获中断处理回调函数,该函数在HAL_TIM_IRQHandler中会被调用
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)//捕获中断发生时执行
{if(htim->Instance == TIM2){if((TIM2CH1_CAPTURE_STA&0X80)==0) //还未成功捕获{if(TIM2CH1_CAPTURE_STA&0X40) //捕获到一个下降沿 { TIM2CH1_CAPTURE_STA|=0X80; //标记成功捕获到一次高电平脉宽TIM2CH1_CAPTURE_VAL=HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_1);//获取当前的捕获值.TIM_RESET_CAPTUREPOLARITY(&htim2,TIM_CHANNEL_1); //一定要先清除原来的设置!!TIM_SET_CAPTUREPOLARITY(&htim2,TIM_CHANNEL_1,TIM_ICPOLARITY_RISING);//配置TIM2通道1上升沿捕获}else //还未开始,第一次捕获上升沿{TIM2CH1_CAPTURE_STA=0; //清空 TIM2CH1_CAPTURE_VAL=0;TIM2CH1_CAPTURE_STA|=0X40; //标记捕获到了上升沿__HAL_TIM_DISABLE(&htim2); //关闭定时器2__HAL_TIM_SET_COUNTER(&htim2,0);TIM_RESET_CAPTUREPOLARITY(&htim2,TIM_CHANNEL_1); //一定要先清除原来的设置!!TIM_SET_CAPTUREPOLARITY(&htim2,TIM_CHANNEL_1,TIM_ICPOLARITY_FALLING);//定时器2通道1设置为下降沿捕获__HAL_TIM_ENABLE(&htim2); //使能定时器2} // printf("TIM2 Capture STA: %02X\n", TIM2CH1_CAPTURE_STA);} }if(htim->Instance == htim3.Instance){if((TIM3CH1_CAPTURE_STA&0X80)==0) //还未成功捕获{if(TIM3CH1_CAPTURE_STA&0X40) //捕获到一个下降沿 { TIM3CH1_CAPTURE_STA|=0X80; //标记成功捕获到一次高电平脉宽TIM3CH1_CAPTURE_VAL=HAL_TIM_ReadCapturedValue(&htim3,TIM_CHANNEL_1);//获取当前的捕获值.TIM_RESET_CAPTUREPOLARITY(&htim3,TIM_CHANNEL_1); //一定要先清除原来的设置!!TIM_SET_CAPTUREPOLARITY(&htim3,TIM_CHANNEL_1,TIM_ICPOLARITY_RISING);//配置TIM2通道1上升沿捕获}else //还未开始,第一次捕获上升沿{TIM3CH1_CAPTURE_STA=0; //清空 TIM3CH1_CAPTURE_VAL=0;TIM3CH1_CAPTURE_STA|=0X40; //标记捕获到了上升沿__HAL_TIM_DISABLE(&htim3); //关闭定时器2__HAL_TIM_SET_COUNTER(&htim3,0);TIM_RESET_CAPTUREPOLARITY(&htim3,TIM_CHANNEL_1); //一定要先清除原来的设置!!TIM_SET_CAPTUREPOLARITY(&htim3,TIM_CHANNEL_1,TIM_ICPOLARITY_FALLING);//定时器2通道1设置为下降沿捕获__HAL_TIM_ENABLE(&htim3); //使能定时器2} }} }/* USER CODE END 4 *//*** @brief This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** @brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* @param file: pointer to the source file name* @param line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
main.h
#define Echo1_Pin GPIO_PIN_0
#define Echo1_GPIO_Port GPIOA
#define Trig1_Pin GPIO_PIN_1
#define Trig1_GPIO_Port GPIOA
#define Trig2_Pin GPIO_PIN_3
#define Trig2_GPIO_Port GPIOA
#define Echo2_Pin GPIO_PIN_6
#define Echo2_GPIO_Port GPIOA
六、 数据处理
数据处理还存在问题 后续找到更好的更新
/**************************************************************************///平滑数据处理
//使用平滑算法(如移动平均)来减少数据的波动。这样可以让测得的距离值更稳定。/**************************************************************************/#define SMOOTHING_FACTOR 5 // 平滑的历史值数量float smooth_dist(int current_dist) {static float history[SMOOTHING_FACTOR] = {0};static int index = 0;static int count = 0;float sum = 0;history[index] = current_dist;index = (index + 1) % SMOOTHING_FACTOR;if (count < SMOOTHING_FACTOR) count++;for (int i = 0; i < count; i++) {sum += history[i];}return sum / count;
}