当前位置: 首页 > news >正文

《机器学习》 基于SVD的矩阵分解 推导、案例实现

目录

一、SVD奇异值分解

1、什么是SVD

2、SVD的应用

        1)数据降维

        2)推荐算法

        3)自然语言处理

3、核心

        1)什么是酉矩阵

        2)什么是对角矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量

                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

2、代码演示

运行结果为:

代码调试状态:


一、SVD奇异值分解

1、什么是SVD

        SVD就是奇异值分解。在机器学习中,SVD是一种常用的矩阵分解方法,用于将一个矩阵分解为三个矩阵的乘积。具体来说,对于一个m×n的实数矩阵A,SVD将其分解为以下形式:

                A = UΣV^T

        其中,U是一个m×m的正交矩阵Σ是一个m×n的对角矩阵V^T是一个n×n的正交矩阵。Σ的对角线上的元素称为奇异值,表示原始矩阵A在对应的奇异向量方向上的重要程度

2、SVD的应用

        1)数据降维

                可以通过保留最重要的奇异值和对应的奇异向量,将原始数据降维到一个较低维度的表示,以减少数据的冗余和计算复杂度。

        2)推荐算法

                SVD可以分解用户-项目评分矩阵,从而得到用户和项目在一个低维的潜在空间中的表示,进而进行推荐。

        3)自然语言处理

                SVD可以用于词向量的降维和表示,从而实现语义分析任务,如文本分类、情感分析、语义相似度计算,也可以用于对大规模文本数据进行降维和压缩,从而提高文本处理和存储的效率。

3、核心

        对于任意矩阵A,我们总能够将其分解位三个矩阵𝑈 𝛴 𝑉 𝑇 。
其中: \bigcup 为酉矩阵\sum 为对角阵V^{T} 为酉矩阵

        1)什么是酉矩阵

                酉矩阵是线性代数中的一种特殊类型的矩阵。一个n×n的复矩阵U被称为酉矩阵,如果它满足以下条件:

                1、U的共轭转置乘以U的结果等于单位矩阵I:U^H × U = I,其中U^H表示U的共轭转置。

                2、U的逆矩阵等于它的共轭转置:U^(-1) = U^H。

        2)什么是对角矩阵

                对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

                        𝑈:𝐴𝐴^𝑇 的特征向量.
                        𝛴^2:𝐴𝐴^ 𝑇 的特征值.
                        𝑉:𝐴^𝑇 𝐴 的特征向量

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量
                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

pip install pillow

2、代码演示

import numpy as np
from PIL import Image   # 导入PIL库中的Image模块,用于处理图像文件
import matplotlib.pyplot as plt  # 导入绘图库def pic_compress(k,pic_array):   # k表示保留的奇异值数量,pic_array表示输入的图像数组global u,sigma,vt,sig,new_pic  # 定义全局变量u,sigma,vt = np.linalg.svd(pic_array)   # 使用np库中的linalg模块的svd方法,对图像的数值进行奇异值分解,得到三个矩阵U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上的元素称为奇异值sig = np.eye(k) * sigma[:k]   # 使用np中的函数eye生成一个kxk的单位矩阵,上述生成的sigma为奇异值,现在取前k个值,将其转换成对角矩阵,即对角线上的值为奇异值,其余值为0new_pic = np.dot(np.dot(u[:,:k],sig),vt[:k,:]) # dot用于执行数组乘法size = u.shape[0] * k + sig.shape[0] * sig.shape[1] + k * vt.shape[1]  # 变换后的图像为u矩阵、sigma矩阵和vt矩阵,这里计算图像的大小return new_pic,size  # 返回压缩后的图像数值和尺寸大小img = Image.open('timg.jpg')  # 打开图像
ori_img = np.array(img)   # 将图像转换成numpy数组
new_img ,size = pic_compress(100,ori_img)  # 调用pic_compress函数对图像进行压缩,导入图片数组,100表示保留的前100个奇异值
print('original size:'+ str(ori_img.shape[0]*ori_img.shape[1]))  # 原始图片的大小,shape[0]和[1]分别表示行数和列数
print('compress size:' + str(size))  # 打印压缩后的像素大小fig,ax = plt.subplots(1,2)  # 设置画布有两张图,fig是整个图像的窗口对象,ax是两个图像的数组
ax[0].imshow(ori_img,cmap='gray')  # 展示第一个图形,为原始图像,cmp='gray'表示图像以灰度图展示
ax[0].set_title('before compress')   # 设置第一个图像的标题
ax[1].imshow(new_img,cmap='gray')   # 展示第二个图像,为压缩后的图像
ax[1].set_title("after compress")
plt.show()
运行结果为:

左侧为原始图像,右侧为压缩后图像,他们的大小为:

代码调试状态:


http://www.mrgr.cn/news/21164.html

相关文章:

  • 【鸿蒙HarmonyOS NEXT】调用后台接口及List组件渲染
  • k8s技术架构
  • Linux日志-sar日志
  • AI基础 L2 Agents1
  • 类和对象(中)
  • 灰光模块,彩光模块-介绍
  • Zotero引用参考文献常见问题及解决方法
  • 鸿蒙轻内核M核源码分析系列十一(1) 信号量Semaphore
  • 监理工程师专业划分-注册监理工程师每人最多可以申请两个专业注册
  • 兴业小知识|什么 法拍房保证金还有不予退回的情况
  • Lenze伦茨E82ZBC, E82ZBB E82ZMBRB安装说明手测
  • 考研英语作文高频20大句式总结
  • 如何测试一个算法
  • 使用Selenium WebDriver捕获网络请求
  • 牛客刷题之JZ31.栈的压入、弹出序列(C++)
  • Pytest插件pytest-selenium-让自动化测试更简洁
  • 基于51单片机的智能小车转向控制系统设计与实现
  • 在嵌入式板子上搭建和自定义live555服务器---编译问题和方法整理
  • 基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面
  • 【软件测试】设计测试用例