当前位置: 首页 > news >正文

鸿蒙轻内核M核源码分析系列八 静态内存MemoryBox

往期知识点记录:

  • 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
  • 轻内核M核源码分析系列一 数据结构-双向循环链表
  • 轻内核M核源码分析系列二 数据结构-任务就绪队列
  • 鸿蒙轻内核M核源码分析系列三 数据结构-任务排序链表
  • 轻内核M核源码分析系列四 中断Hwi
  • 轻内核M核源码分析系列五 时间管理
  • 轻内核M核源码分析系列六 任务及任务调度(1)任务栈
  • 轻内核M核源码分析系列六 任务及任务调度(2)任务模块
  • 轻内核M核源码分析系列六 任务及任务调度(3)任务调度模块
  • 轻内核M核源码分析系列七 动态内存Dynamic Memory
  • 轻内核M核源码分析系列八 静态内存MemoryBox
  • 轻内核M核源码分析系列九 互斥锁Mutex
  • 轻内核M核源码分析系列十 软件定时器Swtmr
  • 轻内核M核源码分析系列十一 (1)信号量Semaphore
  • 轻内核M核源码分析系列十一 (2)信号量Semaphore
  • 轻内核M核源码分析系列十二 事件Event
  • 轻内核M核源码分析系列十三 消息队列Queue
  • 轻内核M核源码分析系列十四 软件定时器Swtmr
  • 轻内核M核源码分析系列十五 CPU使用率CPUP
  • 轻内核M核源码分析系列十六 MPU内存保护单元
  • 轻内核M核源码分析系列十七(1) 异常钩子函数类型介绍
  • 轻内核M核源码分析系列十七(2) 异常钩子函数的注册操作
  • 轻内核M核源码分析系列十七(3) 异常信息ExcInfo
  • 轻内核M核源码分析系列十八 Fault异常处理
  • 轻内核M核源码分析系列十九 Musl LibC
  • 轻内核M核源码分析系列二十 Newlib C
  • 持续更新中……

内存管理模块管理系统的内存资源,它是操作系统的核心模块之一,主要包括内存的初始化、分配以及释放。

在系统运行过程中,内存管理模块通过对内存的申请/释放来管理用户和OS对内存的使用,使内存的利用率和使用效率达到最优,同时最大限度地解决系统的内存碎片问题。

鸿蒙轻内核的内存管理分为静态内存管理和动态内存管理,提供内存初始化、分配、释放等功能。

  • 动态内存:在动态内存池中分配用户指定大小的内存块。

    • 优点:按需分配。
    • 缺点:内存池中可能出现碎片。
  • 静态内存:在静态内存池中分配用户初始化时预设(固定)大小的内存块。

    • 优点:分配和释放效率高,静态内存池中无碎片。
    • 缺点:只能申请到初始化预设大小的内存块,不能按需申请。

本文主要分析鸿蒙轻内核静态内存(Memory Box),后续系列会继续分析动态内存。静态内存实质上是一个静态数组,静态内存池内的块大小在初始化时设定,初始化后块大小不可变更。静态内存池由一个控制块和若干相同大小的内存块构成。控制块位于内存池头部,用于内存块管理。内存块的申请和释放以块大小为粒度。

本文通过分析静态内存模块的源码,帮助读者掌握静态内存的使用。本文中所涉及的源码,以OpenHarmony LiteOS-M内核为例,均可以在开源站点 https://gitee.com/openharmony/kernel_liteos_m 获取。


接下来,我们看下静态内存的结构体,静态内存初始化,静态内存常用操作的源代码。

1、静态内存结构体定义和常用宏定义

1.1 静态内存结构体定义

静态内存结构体在文件kernel\include\los_membox.h中定义。源代码如下,⑴处定义的是静态内存节点LOS_MEMBOX_NODE结构体,⑵处定义的静态内存的结构体池信息结构体为LOS_MEMBOX_INFO,,结构体成员的解释见注释部分。

⑴  typedef struct tagMEMBOX_NODE {struct tagMEMBOX_NODE *pstNext; /**< 静态内存池中空闲节点指针,指向下一个空闲节点 */} LOS_MEMBOX_NODE;⑵  typedef struct LOS_MEMBOX_INFO {UINT32 uwBlkSize;               /**< 静态内存池中空闲节点指针,指向下一个空闲节点 */UINT32 uwBlkNum;                /**< 静态内存池的内存块总数量 */UINT32 uwBlkCnt;                /**< 静态内存池的已分配的内存块总数量 */#if (LOSCFG_PLATFORM_EXC == 1)struct LOS_MEMBOX_INFO *nextMemBox; /**< 指向下一个静态内存池 */#endifLOS_MEMBOX_NODE stFreeList;     /**< 静态内存池的空闲内存块单向链表 */} LOS_MEMBOX_INFO;

对静态内存使用如下示意图进行说明,对一块静态内存区域,头部是LOS_MEMBOX_INFO信息,接着是各个内存块,每块内存块大小是uwBlkSize,包含内存块节点LOS_MEMBOX_NODE和内存块数据区。空闲内存块节点指向下一块空闲内存块节点。

1.2 静态内存常用宏定义

静态内存头文件中还提供了一些重要的宏定义。⑴处的LOS_MEMBOX_ALIGNED(memAddr)用于对齐内存地址,⑵处OS_MEMBOX_NEXT(addr, blkSize)根据当前节点内存地址addr和内存块大小blkSize获取下一个内存块的内存地址。⑶处OS_MEMBOX_NODE_HEAD_SIZE表示内存块中节点头大小,每个内存块包含内存节点LOS_MEMBOX_NODE和存放业务的数据区。⑷处表示静态内存的总大小,包含内存池信息结构体占用的大小,和各个内存块占用的大小。

⑴  #define LOS_MEMBOX_ALIGNED(memAddr) (((UINTPTR)(memAddr) + sizeof(UINTPTR) - 1) & (~(sizeof(UINTPTR) - 1)))⑵  #define OS_MEMBOX_NEXT(addr, blkSize) (LOS_MEMBOX_NODE *)(VOID *)((UINT8 *)(addr) + (blkSize))⑶  #define OS_MEMBOX_NODE_HEAD_SIZE sizeof(LOS_MEMBOX_NODE)⑷  #define LOS_MEMBOX_SIZE(blkSize, blkNum) \(sizeof(LOS_MEMBOX_INFO) + (LOS_MEMBOX_ALIGNED((blkSize) + OS_MEMBOX_NODE_HEAD_SIZE) * (blkNum)))

在文件kernel\src\mm\los_membox.c中也定义了一些宏和内联函数。⑴处定义OS_MEMBOX_MAGIC魔术字,这个32位的魔术字的后8位维护任务编号信息,任务编号位由⑵处的宏定义。⑶处宏定义任务编号的最大值,⑷处的宏从魔术字中提取任务编号信息。

⑸处内联函数设置魔术字,在内存块节点从静态内存池中分配出来后,节点指针.pstNext不再指向下一个空闲内存块节点,而是设置为魔术字。⑹处的内联函数用于校验魔术字。⑺处的宏根据内存块的节点地址获取内存块的数据区地址,⑻处的宏根据内存块的数据区地址获取内存块的节点地址。

⑴  #define OS_MEMBOX_MAGIC         0xa55a5a00⑵  #define OS_MEMBOX_TASKID_BITS   8⑶  #define OS_MEMBOX_MAX_TASKID    ((1 << OS_MEMBOX_TASKID_BITS) - 1)⑷  #define OS_MEMBOX_TASKID_GET(addr) (((UINTPTR)(addr)) & OS_MEMBOX_MAX_TASKID)⑸  STATIC INLINE VOID OsMemBoxSetMagic(LOS_MEMBOX_NODE *node){UINT8 taskID = (UINT8)LOS_CurTaskIDGet();node->pstNext = (LOS_MEMBOX_NODE *)(OS_MEMBOX_MAGIC | taskID);}⑹  STATIC INLINE UINT32 OsMemBoxCheckMagic(LOS_MEMBOX_NODE *node){UINT32 taskID = OS_MEMBOX_TASKID_GET(node->pstNext);if (taskID > (LOSCFG_BASE_CORE_TSK_LIMIT + 1)) {return LOS_NOK;} else {return (node->pstNext == (LOS_MEMBOX_NODE *)(OS_MEMBOX_MAGIC | taskID)) ? LOS_OK : LOS_NOK;}}⑺  #define OS_MEMBOX_USER_ADDR(addr) \((VOID *)((UINT8 *)(addr) + OS_MEMBOX_NODE_HEAD_SIZE))⑻  #define OS_MEMBOX_NODE_ADDR(addr) \((LOS_MEMBOX_NODE *)(VOID *)((UINT8 *)(addr) - OS_MEMBOX_NODE_HEAD_SIZE))

2、静态内存常用操作

当用户需要使用固定长度的内存时,可以通过静态内存分配的方式获取内存,一旦使用完毕,通过静态内存释放函数归还所占用内存,使之可以重复使用。

2.1 初始化静态内存池

我们分析下初始化静态内存池函数UINT32 LOS_MemboxInit(VOID *pool, UINT32 poolSize, UINT32 blkSize)的代码。我们先看看函数参数,VOID *pool是静态内存池的起始地址,UINT32 poolSize是初始化的静态内存池的总大小,poolSize需要小于等于*pool开始的内存区域的大小,否则会影响后面的内存区域。还需要大于静态内存的头部大小sizeof(LOS_MEMBOX_INFO)。长度UINT32 blkSize是静态内存池中的每个内存块的块大小。

我们看下代码,⑴处对传入参数进行校验。⑵处设置静态内存池中每个内存块的实际大小,已内存对齐,也算上内存块中节点信息。⑶处计算内存池中内存块的总数量,然后设置已用内存块数量.uwBlkCnt为0。
⑷处如果可用的内存块为0,返回初始化失败。⑸处获取内存池中的第一个空闲内存块节点。⑹处把空闲内存块挂载在静态内存池信息结构体空闲内存块链表stFreeList.pstNext上,然后执行⑺每个空闲内存块依次指向下一个空闲内存块,链接起来。

UINT32 LOS_MemboxInit(VOID *pool, UINT32 poolSize, UINT32 blkSize)
{LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;LOS_MEMBOX_NODE *node = NULL;UINT32 index;UINT32 intSave;⑴  if (pool == NULL) {return LOS_NOK;}if (blkSize == 0) {return LOS_NOK;}if (poolSize < sizeof(LOS_MEMBOX_INFO)) {return LOS_NOK;}MEMBOX_LOCK(intSave);
⑵  boxInfo->uwBlkSize = LOS_MEMBOX_ALIGNED(blkSize + OS_MEMBOX_NODE_HEAD_SIZE);if (boxInfo->uwBlkSize == 0) {MEMBOX_UNLOCK(intSave);return LOS_NOK;}
⑶  boxInfo->uwBlkNum = (poolSize - sizeof(LOS_MEMBOX_INFO)) / boxInfo->uwBlkSize;boxInfo->uwBlkCnt = 0;
⑷  if (boxInfo->uwBlkNum == 0) {MEMBOX_UNLOCK(intSave);return LOS_NOK;}⑸  node = (LOS_MEMBOX_NODE *)(boxInfo + 1);⑹  boxInfo->stFreeList.pstNext = node;⑺  for (index = 0; index < boxInfo->uwBlkNum - 1; ++index) {node->pstNext = OS_MEMBOX_NEXT(node, boxInfo->uwBlkSize);node = node->pstNext;}node->pstNext = NULL;#if (LOSCFG_PLATFORM_EXC == 1)OsMemBoxAdd(pool);
#endifMEMBOX_UNLOCK(intSave);return LOS_OK;
}

2.2 清除静态内存块内容

我们可以使用函数VOID LOS_MemboxClr(VOID *pool, VOID *box)来清除静态内存块中的数据区内容,需要2个参数,VOID *pool是初始化过的静态内存池地址。VOID *box是需要清除内容的静态内存块的数据区的起始地址,注意这个不是内存块的节点地址,每个内存块的节点区不能清除。下面分析下源码。

⑴处对参数进行校验,⑵处调用memset_s()函数把内存块的数据区写入0。写入的开始地址是内存块的数据区的起始地址VOID *box,写入长度是数据区的长度boxInfo->uwBlkSize - OS_MEMBOX_NODE_HEAD_SIZE

VOID LOS_MemboxClr(VOID *pool, VOID *box)
{LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;⑴  if ((pool == NULL) || (box == NULL)) {return;}⑵  (VOID)memset_s(box, (boxInfo->uwBlkSize - OS_MEMBOX_NODE_HEAD_SIZE), 0,(boxInfo->uwBlkSize - OS_MEMBOX_NODE_HEAD_SIZE));
}

2.3 申请、释放静态内存

初始化静态内存池后,我们可以使用函数VOID *LOS_MemboxAlloc(VOID *pool)来申请静态内存,下面分析下源码。

⑴处获取静态内存池空闲内存块链表头结点,如果链表不为空,执行⑵,把下一个可用节点赋值给nodeTmp。⑶处把链表头结点执行下一个的下一个链表节点,然后执行⑷把分配出来的内存块设置魔术字,接着把内存池已用内存块数量加1。⑸处返回时调用宏OS_MEMBOX_USER_ADDR()计算出内存块的数据区域地质。

VOID *LOS_MemboxAlloc(VOID *pool)
{LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;LOS_MEMBOX_NODE *node = NULL;LOS_MEMBOX_NODE *nodeTmp = NULL;UINT32 intSave;if (pool == NULL) {return NULL;}MEMBOX_LOCK(intSave);
⑴  node = &(boxInfo->stFreeList);if (node->pstNext != NULL) {
⑵      nodeTmp = node->pstNext;
⑶      node->pstNext = nodeTmp->pstNext;
⑷      OsMemBoxSetMagic(nodeTmp);boxInfo->uwBlkCnt++;}MEMBOX_UNLOCK(intSave);⑸  return (nodeTmp == NULL) ? NULL : OS_MEMBOX_USER_ADDR(nodeTmp);
}

对申请的内存块使用完毕,我们可以使用函数UINT32 LOS_MemboxFree(VOID *pool, VOID *box)来释放静态内存,需要2个参数,VOID *pool是初始化过的静态内存池地址。VOID *box是需要释放的静态内存块的数据区的起始地址,注意这个不是内存块的节点地址。下面分析下源码。

⑴处根据待释放的内存块的数据区域地址获取节点地址node,⑵对要释放的内存块先进行校验。⑶处把要释放的内存块挂在内存池空闲内存块链表上,然后执行⑷把已用数量减1。

LITE_OS_SEC_TEXT UINT32 LOS_MemboxFree(VOID *pool, VOID *box)
{LOS_MEMBOX_INFO *boxInfo = (LOS_MEMBOX_INFO *)pool;UINT32 ret = LOS_NOK;UINT32 intSave;if ((pool == NULL) || (box == NULL)) {return LOS_NOK;}MEMBOX_LOCK(intSave);do {
⑴      LOS_MEMBOX_NODE *node = OS_MEMBOX_NODE_ADDR(box);
⑵      if (OsCheckBoxMem(boxInfo, node) != LOS_OK) {break;}⑶      node->pstNext = boxInfo->stFreeList.pstNext;boxInfo->stFreeList.pstNext = node;
⑷      boxInfo->uwBlkCnt--;ret = LOS_OK;} while (0);MEMBOX_UNLOCK(intSave);return ret;
}

接下来,我们再看看校验函数OsCheckBoxMem()。⑴如果内存池的块大小为0,返回校验失败。⑵处计算出要释放的内存快节点相对第一个内存块节点的偏移量offset。⑶如果偏移量除以内存块数量余数不为0,返回校验失败。⑷如果偏移量除以内存块数量的商大于等于内存块的数量,返回校验失败。⑸调用宏OsMemBoxCheckMagic校验魔术字。

STATIC INLINE UINT32 OsCheckBoxMem(const LOS_MEMBOX_INFO *boxInfo, const VOID *node)
{UINT32 offset;⑴  if (boxInfo->uwBlkSize == 0) {return LOS_NOK;}⑵  offset = (UINT32)((UINTPTR)node - (UINTPTR)(boxInfo + 1));
⑶  if ((offset % boxInfo->uwBlkSize) != 0) {return LOS_NOK;}⑷  if ((offset / boxInfo->uwBlkSize) >= boxInfo->uwBlkNum) {return LOS_NOK;}⑸   return OsMemBoxCheckMagic((LOS_MEMBOX_NODE *)node);
}

小结

本文带领大家一起剖析了鸿蒙轻内核的静态内存模块的源代码,包含静态内存的结构体、静态内存池初始化、静态内存申请、释放、清除内容等。

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

在这里插入图片描述

《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN/733GH/overview

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

在这里插入图片描述

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

在这里插入图片描述

鸿蒙开发面试真题(含参考答案):https://gitcode.com/HarmonyOS_MN/733GH/overview

在这里插入图片描述

OpenHarmony 开发环境搭建

图片

《OpenHarmony源码解析》:https://gitcode.com/HarmonyOS_MN/733GH/overview

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

图片

OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN/733GH/overview

图片
在这里插入图片描述


http://www.mrgr.cn/news/20927.html

相关文章:

  • k8s上搭建devops环境
  • 99%的Java程序员不知道的Java Instrument
  • tkinter中按比例放大
  • HTTP与HTTPS在软件测试中的解析
  • SpringBoot项目用Aspose-Words将Word转换为PDF文件正常显示中文的正确姿势
  • 在深度学习计算机视觉的语义分割中,Boundary和Edge的区别是?
  • 波导模式分析2 用于圆TE01模式高功率传输线的大型多模波导滤波器
  • 【新闻转载】2024年上半年勒索软件态势分析:团伙数量激增,攻击策略多样化
  • 大模型日报|9 篇必读的大模型论文
  • 二级菜单的两种思路(完成部分)
  • 行业域名有哪些?
  • Day17_0.1基础学习MATLAB学习小技巧总结(17)——字符向量元胞数组
  • MySQL之对数据库和表的操作
  • 元宇宙先驱,城市区块链
  • CSS学习6--背景图片、颜色、位置、附着、简写、透明、缩放、多背景、凹凸文字、导航栏例子
  • 什么是数据结构三要素?
  • 服务器测试之GPU基础汇总
  • [米联客-XILINX-H3_CZ08_7100] FPGA程序设计基础实验连载-32 ADC模块FEP-DAQ7606采集显示波形方案
  • 汽车智能驾驶算法汇总
  • 【区块链 + 人才服务】FISCO BCOS 高校实训和管理平台 | FISCO BCOS应用案例