当前位置: 首页 > news >正文

THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 2Final Exam2021

2. (a) Briey describe how orthogonal polynomials can be used to fi nd the nodes of Gaussian quadra-ture rules for a weighted integral ∫ a b f ( x ) w ( x ) d x . \int_{a}^bf(x)w(x)\mathrm{d}x. abf(x)w(x)dx.(b) Using your described approach to find the nodes, and then the method of undetermined coefficients to find the weights, derive the Gauss quadrature rule of the form, ∫ − 1 1 f ( x ) ( 1 − x 2 ) 1 / 2 d x ≈ w 0 f ( x 0 ) + w 1 f ( x 1 ) . \int_{-1}^{1}f(x)(1-x^{2})^{1/2}\,\mathrm{d}x\approx w_{0}f(x_{0})+w_{1}f(x_{1}). 11f(x)(1x2)1/2dxw0f(x0)+w1f(x1).You may use the following facts without proof: ϕ 0 ( x ) = 1 , ϕ 1 ( x ) = x , ϕ 2 ( x ) = x t , ϕ 2 ( x ) = x 2 − 1 / 4. \phi_{0}(x)=1, \phi_{1}(x)=x, \phi_{2}(x)= x t, \phi_{2}(x)=x^{2}-1/4. ϕ0(x)=1,ϕ1(x)=x,ϕ2(x)=xt,ϕ2(x)=x21/4. are orthogonal polynomials w.r.t. the weight function w ( x ) = ( 1 − x 2 ) 1 / 2 w(x)=(1-x^{2})^{1/2} w(x)=(1x2)1/2 on ( − 1 , 1 ) (-1,1) (1,1), and ∫ − 1 1 ( 1 − x 2 ) 1 / 2 d x = π / 2. \int_{-1}^1(1-x^{2})^{1/2}\mathrm{d}x=\pi/2. 11(1x2)1/2dx=π/2.

Ans:

4. Let f ∈ [ − 1 , 1 ] f\in [-1,1] f[1,1] and let p n p_n pn be the best weighted L 2 L_2 L2 approximation to f f f from polynomials of degree at most n n n with respect to the weight function w ( x ) = ( 1 − x 2 ) − 1 / 2 w(x)=(1-x^{2})^{-1/2} w(x)=(1x2)1/2 on ( − 1 ; 1 ) . (-1; 1). (1;1).


http://www.mrgr.cn/news/18624.html

相关文章:

  • Unity3D DOTS Component详解
  • IDEA Maven 源修改为国内阿里云镜像的正确方式
  • 【机器学习-神经网络】循环神经网络
  • 探索LLM大模型奥秘,新书《大模型入门:技术原理与实战应用》助你快速上手(附PDF下载)
  • 尾矿库位移监测站:为矿业行业的健康发展贡献力量
  • day46 代码随想录 单调栈难题 面试高频题
  • 用mintupgrade工具将Linux Mint 21.3升级到Linux Mint 22失败的解决办法
  • 3GPP R18 Network energy savings(NES) 之cell DTX/DRX
  • 09-02 周一 elasticsearch使用指南
  • JAVA基础:封装、继承和多态(详讲)
  • 毕设分享 基于大数据人才岗位数据分析
  • 三种权限模型该如何选择
  • IPV6解说
  • 用R绘制世界地图及中国地图
  • 《精通Transformer》ChatGPT:放弃战斗吧,向Transformer投降!
  • Isaac Sim 物理参数翻译
  • Docker 简介
  • 024集—— 正则表达式、replace、DateTime日期的用法——C#学习笔记
  • MovieSum:大型复杂文本摘要数据集,提供格式化剧本信息以及维基摘要 | ACL 2024
  • ‘rimraf‘ 不是内部或外部命令,也不是可运行的程序