当前位置: 首页 > news >正文

C++深入理解AVL树的设计与实现:旋转操作详解

C++深入理解AVL树的设计与实现:旋转操作详解

AVL树(Adelson-Velsky and Landis Tree)是一种自平衡二叉搜索树,通过在插入和删除节点时进行旋转操作来保持树的平衡。AVL树的每个节点都维护一个平衡因子,即左右子树的高度差,确保其绝对值不超过1。本文将详细介绍如何实现一个AVL树,并提供旋转操作的实现细节。

一、AVL树的基本概念

AVL树是一种高度平衡的二叉搜索树,其特点是每个节点的左右子树高度差不超过1。AVL树的平衡性保证了其查找、插入和删除操作的时间复杂度为O(log n)。

二、AVL树的节点设计

在C++中,我们可以使用类来定义AVL树的节点。每个节点包含数据域、左子节点指针、右子节点指针和高度信息。以下是节点类的定义:

class AVLNode {
public:int key;int height;AVLNode* left;AVLNode* right;AVLNode(int k) : key(k), height(1), left(nullptr), right(nullptr) {}
};
三、AVL树的类设计

AVL树类需要包含根节点指针,并提供插入、删除和查找操作的接口。以下是AVL树类的定义:

class AVLTree {
private:AVLNode* root;// 辅助函数int height(AVLNode* node);int getBalance(AVLNode* node);AVLNode* rightRotate(AVLNode* y);AVLNode* leftRotate(AVLNode* x);AVLNode* insert(AVLNode* node, int key);AVLNode* minValueNode(AVLNode* node);AVLNode* deleteNode(AVLNode* root, int key);public:AVLTree() : root(nullptr) {}void insert(int key);void deleteNode(int key);void inOrder();void preOrder();void postOrder();
};
四、旋转操作的实现

AVL树的旋转操作包括右旋、左旋、左右旋和右左旋。旋转操作用于在插入或删除节点后恢复树的平衡。

  1. 右旋操作
AVLNode* AVLTree::rightRotate(AVLNode* y) {AVLNode* x = y->left;AVLNode* T2 = x->right;// 执行旋转x->right = y;y->left = T2;// 更新高度y->height = max(height(y->left), height(y->right)) + 1;x->height = max(height(x->left), height(x->right)) + 1;// 返回新的根节点return x;
}
  1. 左旋操作
AVLNode* AVLTree::leftRotate(AVLNode* x) {AVLNode* y = x->right;AVLNode* T2 = y->left;// 执行旋转y->left = x;x->right = T2;// 更新高度x->height = max(height(x->left), height(x->right)) + 1;y->height = max(height(y->left), height(y->right)) + 1;// 返回新的根节点return y;
}
  1. 获取节点高度
int AVLTree::height(AVLNode* node) {if (node == nullptr) return 0;return node->height;
}
  1. 获取节点平衡因子
int AVLTree::getBalance(AVLNode* node) {if (node == nullptr) return 0;return height(node->left) - height(node->right);
}
五、插入操作的实现

插入操作需要在插入新节点后检查并恢复树的平衡。以下是插入操作的实现:

AVLNode* AVLTree::insert(AVLNode* node, int key) {// 1. 执行标准的BST插入if (node == nullptr) return new AVLNode(key);if (key < node->key) {node->left = insert(node->left, key);} else if (key > node->key) {node->right = insert(node->right, key);} else {return node; // 不允许插入重复键}// 2. 更新节点高度node->height = 1 + max(height(node->left), height(node->right));// 3. 获取节点平衡因子int balance = getBalance(node);// 4. 检查平衡因子并进行相应的旋转操作// LL情况if (balance > 1 && key < node->left->key) {return rightRotate(node);}// RR情况if (balance < -1 && key > node->right->key) {return leftRotate(node);}// LR情况if (balance > 1 && key > node->left->key) {node->left = leftRotate(node->left);return rightRotate(node);}// RL情况if (balance < -1 && key < node->right->key) {node->right = rightRotate(node->right);return leftRotate(node);}return node;
}void AVLTree::insert(int key) {root = insert(root, key);
}
六、删除操作的实现

删除操作需要在删除节点后检查并恢复树的平衡。以下是删除操作的实现:

AVLNode* AVLTree::deleteNode(AVLNode* root, int key) {// 1. 执行标准的BST删除if (root == nullptr) return root;if (key < root->key) {root->left = deleteNode(root->left, key);} else if (key > root->key) {root->right = deleteNode(root->right, key);} else {if ((root->left == nullptr) || (root->right == nullptr)) {AVLNode* temp = root->left ? root->left : root->right;if (temp == nullptr) {temp = root;root = nullptr;} else {*root = *temp;}delete temp;} else {AVLNode* temp = minValueNode(root->right);root->key = temp->key;root->right = deleteNode(root->right, temp->key);}}if (root == nullptr) return root;// 2. 更新节点高度root->height = 1 + max(height(root->left), height(root->right));// 3. 获取节点平衡因子int balance = getBalance(root);// 4. 检查平衡因子并进行相应的旋转操作// LL情况if (balance > 1 && getBalance(root->left) >= 0) {return rightRotate(root);}// LR情况if (balance > 1 && getBalance(root->left) < 0) {root->left = leftRotate(root->left);return rightRotate(root);}// RR情况if (balance < -1 && getBalance(root->right) <= 0) {return leftRotate(root);}// RL情况if (balance < -1 && getBalance(root->right) > 0) {root->right = rightRotate(root->right);return leftRotate(root);}return root;
}void AVLTree::deleteNode(int key) {root = deleteNode(root, key);
}
七、遍历操作的实现

为了验证AVL树的正确性,我们可以实现中序、前序和后序遍历操作:

void inOrderHelper(AVLNode* root) {if (root != nullptr) {inOrderHelper(root->left);cout << root->key << " ";inOrderHelper(root->right);}
}void AVLTree::inOrder() {inOrderHelper(root);cout << endl;
}void preOrderHelper(AVLNode* root) {if (root != nullptr) {cout << root->key << " ";preOrderHelper(root->left);preOrderHelper(root->right);}
}void AVLTree::preOrder() {preOrderHelper(root);cout << endl;
}void postOrderHelper(AVLNode* root) {if (root != nullptr) {postOrderHelper(root->left);postOrderHelper(root->right);cout << root->key << " ";}
}void AVLTree::postOrder() {postOrderHelper(root);cout << endl;
}
八、完整代码示例

以下是完整的AVL树实现代码:

#include <iostream>
using namespace std;class AVLNode {
public:int key;int height;AVLNode* left;AVLNode* right;AVLNode(int k) : key(k),好的,我们继续实现AVL树的完整代码:```cpp
#include <iostream>
using namespace std;class AVLNode {
public:int key;int height;AVLNode* left;AVLNode* right;AVLNode(int k) : key(k), height(1), left(nullptr), right(nullptr) {}
};class AVLTree {
private:AVLNode* root;int height(AVLNode* node) {if (node == nullptr) return 0;return node->height;}int getBalance(AVLNode* node) {if (node == nullptr) return 0;return height(node->left) - height(node->right);}AVLNode* rightRotate(AVLNode* y) {AVLNode* x = y->left;AVLNode* T2 = x->right;x->right = y;y->left = T2;y->height = max(height(y->left), height(y->right)) + 1;x->height = max(height(x->left), height(x->right)) + 1;return x;}AVLNode* leftRotate(AVLNode* x) {AVLNode* y = x->right;AVLNode* T2 = y->left;y->left = x;x->right = T2;x->height = max(height(x->left), height(x->right)) + 1;y->height = max(height(y->left), height(y->right)) + 1;return y;}AVLNode* insert(AVLNode* node, int key) {if (node == nullptr) return new AVLNode(key);if (key < node->key) {node->left = insert(node->left, key);} else if (key > node->key) {node->right = insert(node->right, key);} else {return node;}node->height = 1 + max(height(node->left), height(node->right));int balance = getBalance(node);if (balance > 1 && key < node->left->key) {return rightRotate(node);}if (balance < -1 && key > node->right->key) {return leftRotate(node);}if (balance > 1 && key > node->left->key) {node->left = leftRotate(node->left);return rightRotate(node);}if (balance < -1 && key < node->right->key) {node->right = rightRotate(node->right);return leftRotate(node);}return node;}AVLNode* minValueNode(AVLNode* node) {AVLNode* current = node;while (current->left != nullptr) {current = current->left;}return current;}AVLNode* deleteNode(AVLNode* root, int key) {if (root == nullptr) return root;if (key < root->key) {root->left = deleteNode(root->left, key);} else if (key > root->key) {root->right = deleteNode(root->right, key);} else {if ((root->left == nullptr) || (root->right == nullptr)) {AVLNode* temp = root->left ? root->left : root->right;if (temp == nullptr) {temp = root;root = nullptr;} else {*root = *temp;}delete temp;} else {AVLNode* temp = minValueNode(root->right);root->key = temp->key;root->right = deleteNode(root->right, temp->key);}}if (root == nullptr) return root;root->height = 1 + max(height(root->left), height(root->right));int balance = getBalance(root);if (balance > 1 && getBalance(root->left) >= 0) {return rightRotate(root);}if (balance > 1 && getBalance(root->left) < 0) {root->left = leftRotate(root->left);return rightRotate(root);}if (balance < -1 && getBalance(root->right) <= 0) {return leftRotate(root);}if (balance < -1 && getBalance(root->right) > 0) {root->right = rightRotate(root->right);return leftRotate(root);}return root;}void inOrderHelper(AVLNode* root) {if (root != nullptr) {inOrderHelper(root->left);cout << root->key << " ";inOrderHelper(root->right);}}void preOrderHelper(AVLNode* root) {if (root != nullptr) {cout << root->key << " ";preOrderHelper(root->left);preOrderHelper(root->right);}}void postOrderHelper(AVLNode* root) {if (root != nullptr) {postOrderHelper(root->left);postOrderHelper(root->right);cout << root->key << " ";}}public:AVLTree() : root(nullptr) {}void insert(int key) {root = insert(root, key);}void deleteNode(int key) {root = deleteNode(root, key);}void inOrder() {inOrderHelper(root);cout << endl;}void preOrder() {preOrderHelper(root);cout << endl;}void postOrder() {postOrderHelper(root);cout << endl;}
};int main() {AVLTree tree;tree.insert(10);tree.insert(20);tree.insert(30);tree.insert(40);tree.insert(50);tree.insert(25);cout << "中序遍历: ";tree.inOrder();cout << "前序遍历: ";tree.preOrder();cout << "后序遍历: ";tree.postOrder();tree.deleteNode(40);cout << "删除40后的中序遍历: ";tree.inOrder();return 0;
}
九、总结

本文详细介绍了如何实现一个AVL树,并提供了旋转操作的实现细节。通过右旋、左旋、左右旋和右左旋操作,我们可以在插入和删除节点后保持树的平衡。AVL树在实际应用中具有广泛的用途,例如数据库索引、内存管理等。希望本文对你理解AVL树的实现有所帮助,并能在面试中展示你的编程能力和对C++语言特性的理解。

如果你有其他问题或需要进一步的帮助,请随时告诉我!😊


http://www.mrgr.cn/news/17728.html

相关文章:

  • C++开发基础之宏定义:入门、中级、高级用法示例解析
  • OHIF Viewer 配置接口的地方
  • yolov8目标检测pyside6可视化图形界面+检测源码ui文件——用于计数统计
  • 交流负载箱的特点和优势有哪些?
  • 【SuperMap iDesktopX 2024视频分析】
  • java操作日期时间类
  • 从零开始写游戏之斗地主-数据结构
  • 【Canvas与数学】N边形中的N边形
  • 探索Java中的分布式任务调度:从理论到实践
  • 第三方检验检测实验室管理如何实现
  • mysql入门
  • 【数据结构】二叉树的链式结构,二叉树的遍历,求节点个数以及高度
  • Visual Studio 卸载和移除项目的区别
  • 深度学习100问47:什么是RNN的正则化,为什么说RNN的正则化很重要
  • 【验证码逆向专栏】某某滑块逆向分析
  • pyqt6常规布局问题!具体请看如下:
  • 课程37:Docker持久化部署(数据库、日志、配置文件)
  • ARP协议(原理,特点,报文格式,具体过程),ARP缓存(有效时间,为什么),ARP欺骗(定向断网,成为中间人),RARP简单介绍
  • 为Jekyll站添加“相关文章“功能
  • HTML+CSS面试题总结:(第三天)