当前位置: 首页 > news >正文

第T10周:使用TensorFlow实现数据增强

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊
  • 在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到我们代码当中,两种数据增强方式如下:
    1、将数据增强模块嵌入model中
    2、在Dataset数据集中进行数据增强

    文章目录

    • 一、前期工作
      • 1.设置GPU(如果使用的是CPU可以忽略这步)
      • 2、加载数据
    • 二、数据增强
    • 三、增强方式
    • 四、训练模型
    • 五、自定义增强函数
    • 六、总结

电脑环境:
语言环境:Python 3.8.0
编译器:Jupyter Notebook
深度学习环境:tensorflow 2.17.0

一、前期工作

1.设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")# 打印显卡信息,确认GPU可用
print(gpus)

2、加载数据

data_dir   = "./365-8-data/"
img_height = 224
img_width  = 224
batch_size = 32train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)

Found 3400 files belonging to 2 classes.
Using 2380 files for training.

val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.3,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)

Found 3400 files belonging to 2 classes.
Using 1020 files for validation.

由于原始数据集不包含测试集,因此需要创建一个。使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。

val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))

Number of validation batches: 26
Number of test batches: 6

tf.data.experimental.cardinality 函数是一个用于确定tf.data.Dataset对象中包含的元素数量的实验性功能。然而,需要注意的是,这个函数并不总是能够返回确切的元素数量,特别是对于无限数据集或包含复杂转换的数据集。

数据一共有猫、狗两类:

class_names = train_ds.class_names
print(class_names)

[‘cat’, ‘dog’]

数据归一化:

AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds  = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

数据可视化:

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1) plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

二、数据增强

我们可以使用 tf.keras.layers.experimental.preprocessing.RandomFlip tf.keras.layers.experimental.preprocessing.RandomRotation 进行数据增强,当然还有其他的增强函数(新版本的tf增强函数调用函数不同):

  • tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像。
  • tf.keras.layers.experimental.preprocessing.RandomRotation:随机旋转每个图像。
  • tf.keras.layers.experimental.preprocessing.RandomZoom:随机裁剪和重新调整大小来模拟缩放效果。
  • tf.keras.layers.experimental.preprocessing.RandomContrast:调整图像的对比度。
  • tf.keras.layers.experimental.preprocessing.RandomBrightness:调整图像的亮度。
data_augmentation = tf.keras.Sequential([tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])

第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。
增加一张图片为一个批次:

# Add the image to a batch.
image = tf.expand_dims(images[i], 0)
plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = data_augmentation(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0])plt.axis("off")

在这里插入图片描述
更多的数据增强方式可以参考:链接: link

三、增强方式

方法一:将其嵌入model中

model = tf.keras.Sequential([data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),
])

这样做的好处是:

  • 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
    注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。

方法二:在Dataset数据集中进行数据增强

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNEdef prepare(ds):ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)return dstrain_ds = prepare(train_ds)

四、训练模型

model = tf.keras.Sequential([layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(len(class_names))
])model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])epochs=20
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/20
75/75 ━━━━━━━━━━━━━━━━━━━━ 399s 5s/step - accuracy: 0.5225 - loss: 293.7218 - val_accuracy: 0.6775 - val_loss: 0.5858
Epoch 2/20
75/75 ━━━━━━━━━━━━━━━━━━━━ 73s 376ms/step - accuracy: 0.7183 - loss: 0.5656 - val_accuracy: 0.8080 - val_loss: 0.4210
..............
Epoch 20/20
75/75 ━━━━━━━━━━━━━━━━━━━━ 25s 329ms/step - accuracy: 0.9430 - loss: 0.1563 - val_accuracy: 0.9263 - val_loss: 0.2544
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

6/6 ━━━━━━━━━━━━━━━━━━━━ 1s 100ms/step - accuracy: 0.9310 - loss: 0.1482
Accuracy 0.921875

五、自定义增强函数

import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):seed = (random.randint(0,9), 0)# 随机改变图像对比度stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)return stateless_random_brightness
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())

Min and max pixel values: 2.4591687 241.47968

plt.figure(figsize=(8, 8))
for i in range(9):augmented_image = aug_img(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0].numpy().astype("uint8"))plt.axis("off")

在这里插入图片描述
将自定义增强函数应用到我们数据上

AUTOTUNE = tf.data.AUTOTUNEimport random
# 这是大家可以自由发挥的一个地方
def aug_img(image):seed = (random.randint(0,9), 0)# 随机改变图像对比度stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)return stateless_random_brightnessdef preprocess_image(image, label):image = image / 255.0image = aug_img(image)return (image, label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)

六、总结

本次学习了使用两种方式的数据增强提高模型性能以及自定义数据增强函数。


http://www.mrgr.cn/news/15497.html

相关文章:

  • MySQL基础学习:如何排查慢SQL
  • Avalonia 播放 VLC 视频(Windows / Linux)
  • AIM-D100-CA直流绝缘监测仪筑牢电动汽车充电安全防线
  • 从零到一!如何用AIppt一键完成一份专业ppt的制作
  • 继电器测试负载箱的常见参数和规格有哪些需要关注?
  • 8种数据结构
  • mac电脑登录循环重启问题
  • linux命令学习-awk命令
  • 访问Neo4j验证失败(The client is unauthorized due to authentication failure.)
  • 聚餐地计算(华为od机考题)
  • SSH和Git的基本知识
  • Linux安装使用Apache(Windows下载,离线安装)
  • 24年9月计算机二级考试时间和备考经验‼️
  • Docker 安装
  • 【学术会议征稿】第三届航空航天与控制工程国际学术会议 (ICoACE 2024)
  • flink 核心概念(个人总结)
  • 使用docker compose一键部署 Openldap
  • knime一行代码都不用写,就可以清洗数据,详细文字
  • C语言的发展历程:从诞生到现代编程的基石
  • 深入理解Java代理模式:从静态到动态的实现与应用