当前位置: 首页 > news >正文

矩阵分块乘法的证明

      设A是一个m \times l的矩阵,B是一个l \times n的矩阵,

A_{m \times l} = \left( \begin{matrix} a_{11} & \cdots & a_{1l} \\ \vdots & \qquad & \vdots \\ a_{m1} & \cdots & a_{ml} \end{matrix} \right)           B_{l \times n} = \left( \begin{matrix} b_{11} & \cdots & b_{1n} \\ \vdots & \qquad & \vdots \\ b_{l1} & \cdots & b_{ln} \end{matrix} \right)

A和B的分块矩阵分别记为  A^{'}B^{'} ,

A^{'}_{s \times t} = \left( \begin{matrix} A_{11} & \cdots & A_{1t} \\ \vdots & \qquad & \vdots \\ A_{s1} & \cdots & A_{st} \end{matrix} \right)        B^{'}_{t \times r} = \left( \begin{matrix} B_{11} & \cdots & B_{1r} \\ \vdots & \qquad & \vdots \\ B_{t1} & \cdots & B_{tr} \end{matrix} \right)

证明AB = A^{'}B^{'}.

证明:设

AB = \left( \begin{matrix} e_{11} & \cdots & e_{1n} \\ \vdots & \qquad & \vdots \\ e_{m1} & \cdots & e_{mn} \end{matrix} \right)     e_{ij} = \sum_{k=1}^l a_{ik} b_{kj} 

A^{'}B^{'} = \left( \begin{matrix} C_{11} & \cdots & C_{1r} \\ \vdots & \qquad & \vdots \\ C_{s1} & \cdots & C_{sr} \end{matrix} \right)  C_{ij} = \sum_{k=1}^t A_{ik} B_{kj}

      要证明AB = A^{'}B^{'},可以首先证AB和A^{'}B^{'}是同型矩阵,即证明A^{'}B^{'}是一个m \times n的矩阵,接着再证AB = A^{'}B^{'},可以把AB做一个与A^{'}B^{'}同样的分块,然后证明相同位置的分块相等。关于矩阵分块,这里有几个结论,1)处于同一行的分块,它们包含的行数相同,2)处于同一列的分块它们包含的列数相同,3)两个可以相乘的分块矩阵,左边矩阵的第i列的分块包含的列数和右边矩阵的第i行的分块包含的行数相同,左边矩阵对行分块及右边矩阵对列分块没有什么限制。

       我们先定义两个函数L和H,L用于获取矩阵分块包含的列数,H用于获取矩阵分块包含的行数,令L(A_{ij}) = l_j (1\leqslant i \leqslant s) 有l_1+l_2+\cdots+l_t=l,同时令H(B_{ij}) = h_i (1 \leqslant j \leqslant r),有h_1+h_2+ \cdots + h_t = l,并且有l_i = h_i(1 \leqslant i \leqslant t),令H(A_{ij}) = h^{'}i(1 \leqslant j \leqslant t),有 h^{'}_1 + h^{'}_2 + \cdots + h^{'}_s = m,令L(B_{ij}) = l^{'}_j(1 \leqslant i \leqslant t),有l^{'}_1 + l^{'}_2 + \cdots + l^{'}_r = n。因为C_{ij} = \sum_{k=1}^t A_{ik} B_{kj},所以H(C_{ij}) = H(A_{ik}) = h^{'}_iL(C_{ij}) = L(B_{kj}) = l^{'}_j,所以C_{ij}是一个h^{'}_i \times l^{'}_j的矩阵,所有与C_{ij}在同一行的子块包含的行数都相同,所有与C_{ij}在同一列的子块包含的列数都相同,所以C_{ij}仍然是一个分块矩阵,A^{'}B^{'}包含的行数为\sum_{i=1}^sH(C_{ij}) = \sum_{i=1}^sh^{'}i = m, 包含的列数为\sum_{j=1}^rL(C_{ij}) = \sum_{j=1}^rl^{'}_j = n,所以A^{'}B^{'}是一个m \times n矩阵,即证明了A^{'}B^{'}和AB是同型矩阵。

       接下来证明AB = A^{'}B^{'}

       把AB做与A^{'}B^{'}同样的分块,记为

            AB = \left( \begin{matrix} E_{11} & \cdots & E_{1r} \\ \vdots & \qquad & \vdots \\ E_{s1} & \cdots & E_{sr} \end{matrix} \right)     只需证明E_{ij} = C_{ij}即可。                           

       要证明E_{ij} = C_{ij},只要证明它们的同位置元素相等,也就是证明(E_{ij})_{uv} = (C_{ij})_{uv},让我们来各自求这两个元素,看它们是否相等。

      先求(E_{ij})_{uv},先求(E_{ij})_{uv}的行列号,H((E_{ij})_{uv}) = H((E_{ij})_{1v}) + u - 1 = \sum_{r=1}^{i-1}H(E_{rv}) + 1 + u -1 = \sum_{r=1}^{i-1}h^{'}_r + u

 令\sum_{r=1}^{i-1}h^{'}_r为p,则H((E_{ij})_{uv}) = p + u

L((E_{ij})_{uv}) = L((E_{ij})_{u1}) + v - 1 = \sum_{c=1}^{j-1}L(E_{uc}) + 1 + v -1 = \sum_{c=1}^{j-1}l^{'}_c + v

\sum_{c=1}^{j-1}l^{'}_c为q,L((E_{ij})_{uv}) = q + v,则(E_{ij})_{uv} = e_{p+u, q+v} = \sum_{k=1}^l a_{p+u,k}b_{k,q+v}

接下来求(C_{ij})_{uv}C_{ij} = \sum_{k=1}^t A_{ik} B_{kj},所以(C_{ij})_{uv} = \sum_{k=1}^t (A_{ik} B_{kj})_{uv} = (A_{i1}B_{1j})_{uv} +(A_{i2}B_{2j})_{uv} + \cdots + (A_{it}B_{tj})_{uv}

      下面看如何计算(A_{ik} B_{kj})_{uv},根据矩阵的乘法规律,它是用A_{ik}的第u行乘以B_{kj}的第v列得到,

      H((A_{ik})_{u1}) = H((A_{ik})_{11}) + u - 1= \sum_{r=1}^{i-1}H(A_{r1}) + 1 + u - 1 = \sum_{r=1}^{i-1}h^{'}_r + u = p+u

      L((A_{ik})_{u1}) = \sum_{c=1}^{k-1}L(A_{ic}) + 1 = \sum_{c=1}^{k-1}l_c + 1

      H((B_{kj})_{1v}) = H((B_{kj})_{11}) = \sum_{r=1}^{k-1}H(B_{rj}) + 1 = \sum_{r=1}^{k-1}h_r + 1

      L((B_{kj})_{1v}) = L((B_{kj})_{11}) + v -1 = \sum_{c=1}^{j-1}L(B_{kc}) + 1 + v - 1= \sum_{c=1}^{j-1}l^{'}_c + v = q + v

      A_{ik}的第u行为:\{ a_{p+u, w}|\sum_{c=1}^{k-1}l_c + 1 \leqslant w \leqslant \sum_{c=1}^{k}l_c \}

      B_{kj}的第v列为:\{b_{w,q+v}|\sum_{r=1}^{k-1}h_r + 1 \leqslant w \leqslant \sum_{r=1}^{k}h_r \}

     别忘了有l_i = h_i(1 \leqslant i \leqslant t),于是(A_{ik} B_{kj})_{uv} = \sum_{w=h_1+h_2+\cdots+h_{k-1} + 1}^{h_1+h_2+\cdots+h_k}a_{p+u,w}b_{w,q+v},       (C_{ij})_{uv} = \sum_{k=1}^t (A_{ik} B_{kj})_{uv} = (A_{i1}B_{1j})_{uv} + (A_{i2}B_{2j})_{uv} + \cdots + (A_{it}B_{tj})_{uv} = \sum_{w=1}^{h_1}a_{p+u,w}b_{w,q+v} + \sum_{w=h_1 + 1}^{h_1+h_2}a_{p+u,w}b_{w,q+v} + \cdots + \sum_{w=h_1+h_2+\cdots+h_{t-1} + 1}^{h_1+h_2+\cdots+h_t}a_{p+u,w}b_{w,q+v} = \sum_{w=1}^{h_1+h_2+\cdots+h_t}a_{p+u,w}b_{w,q+v} = \sum_{w=1}^{l}a_{p+u,w}b_{w,q+v}

     (E_{ij})_{uv} = (C_{ij})_{uv},因此AB = A^{'}B^{'}

     证明完毕。


http://www.mrgr.cn/news/13810.html

相关文章:

  • 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch12 随机森林(Random Forest)
  • 基于协同过滤算法Spring Boot+Vue的图书商城系统
  • ## 已解决:亲测有效的 org.xml.sax.SAXNotRecognizedException 异常解决方法
  • 独家!汕尾广投荣得ICAS英格尔认证颁发的ESG认证,引爆基建行业绿色革命浪潮
  • 微服务面试题
  • 【Rust光年纪】深度解读:Rust语言中各类消息队列客户端库详细对比
  • FastAPI vs Flask: 专业对比与选择
  • javaEE
  • 回归分析系列14.2— 正则化回归
  • CSS(层叠样式表)
  • 游戏开发的双刃剑:Visual Basic在游戏开发中的局限与机遇
  • Python知识点:如何使用Elasticsearch与Elasticsearch-py进行全文检索
  • PLM系统实施有哪些特点?有哪些具体实施步骤?
  • 损失函数与反向传播
  • 009 下一代网络技术:SDN与虚拟化
  • 未戴安全帽算法检测源码样本安防监控视频分析未戴安全帽检测算法应用场景
  • 树结构与递归学习笔记二
  • Spark-RDD迭代器管道计算
  • “Ruby宝石匣:解锁流行插件系统的奥秘“
  • 适合跑步运动的蓝牙耳机推荐?盘点开放式耳机排行榜10强