当前位置: 首页 > news >正文

【python】Gpt-embedding文本建模

要使用Gpt-embedding计算两组在不同主题下的相似度,可以按照以下步骤进行:

1. 准备数据

  • 收集公司文档 D c D_c Dc 和政府文档 D g D_g Dg

2. 定义主题和关键词

  • 设定主题集合 T = { t 1 , t 2 , … , t n } T = \{t_1, t_2, \ldots, t_n\} T={t1,t2,,tn} 和对应的关键词集合 K ( t i ) K(t_i) K(ti)

3. 生成主题嵌入

  • 对于每个主题 t i t_i ti,生成嵌入向量 E ( t i ) E(t_i) E(ti)
    E ( t i ) = Embedding ( K ( t i ) ) E(t_i) = \text{Embedding}(K(t_i)) E(ti)=Embedding(K(ti))

4. 生成文档嵌入

  • 生成公司文档和政府文档的嵌入向量:
    E ( D c ) = Embedding ( D c ) E(D_c) = \text{Embedding}(D_c) E(Dc)=Embedding(Dc)
    E ( D g ) = Embedding ( D g ) E(D_g) = \text{Embedding}(D_g) E(Dg)=Embedding(Dg)

5. 计算相似度

  • 对于每个主题 t i t_i ti,计算公司文档与主题的相似度 S c ( t i ) S_c(t_i) Sc(ti) 和政府文档与主题的相似度 S g ( t i ) S_g(t_i) Sg(ti)
    S c ( t i ) = CosineSimilarity ( E ( D c ) , E ( t i ) ) S_c(t_i) = \text{CosineSimilarity}(E(D_c), E(t_i)) Sc(ti)=CosineSimilarity(E(Dc),E(ti))
    S g ( t i ) = CosineSimilarity ( E ( D g ) , E ( t i ) ) S_g(t_i) = \text{CosineSimilarity}(E(D_g), E(t_i)) Sg(ti)=CosineSimilarity(E(Dg),E(ti))

  • 计算公司文档与政府文档之间的相似度 $ S(D_c, D_g) $:
    S ( D c , D g ) = CosineSimilarity ( E ( D c ) , E ( D g ) ) S(D_c, D_g) = \text{CosineSimilarity}(E(D_c), E(D_g)) S(Dc,Dg)=CosineSimilarity(E(Dc),E(Dg))

6. 输出结果

  • 输出每个主题的相似度得分:
    Result = { ( t i , S c ( t i ) , S g ( t i ) , S ( D c , D g ) ) ∣ ∀ t i ∈ T } \text{Result} = \{(t_i, S_c(t_i), S_g(t_i), S(D_c, D_g)) | \forall t_i \in T\} Result={(ti,Sc(ti),Sg(ti),S(Dc,Dg))∣∀tiT}

要点

  • 使用text-embedding-3-small模型为每个主题的关键词生成嵌入向量。

  • 使用相同的模型为公司文档和政府文档生成嵌入向量。

  • 对于每个主题,计算公司文档嵌入与政府文档嵌入之间的相似度得分。

示例代码(Python伪代码)

from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import openai  # 确保你安装了OpenAI的Python库# 假设你有两个文档
company_document = "公司文档内容"
government_document = "政府文档内容"# 定义18个主题和关键词
themes = {"主题1": ["关键词1", "关键词2"],"主题2": ["关键词3", "关键词4"],# 继续为其他主题定义关键词,直到主题18
}# 生成主题嵌入
theme_embeddings = {}
for theme, keywords in themes.items():keywords_str = ' '.join(keywords)embedding = openai.Embedding.create(input=keywords_str, model="text-embedding-3-small")['data'][0]['embedding']theme_embeddings[theme] = embedding# 生成文档嵌入
company_embedding = openai.Embedding.create(input=company_document, model="text-embedding-3-small")['data'][0]['embedding']
government_embedding = openai.Embedding.create(input=government_document, model="text-embedding-3-small")['data'][0]['embedding']# 计算每个主题的相似度
similarity_scores = {}
for theme, theme_embedding in theme_embeddings.items():# 计算公司文档和政府文档与主题的相似度company_similarity = cosine_similarity([company_embedding], [theme_embedding])[0][0]government_similarity = cosine_similarity([government_embedding], [theme_embedding])[0][0]# 计算公司和政府文档之间的相似度document_similarity = cosine_similarity([company_embedding], [government_embedding])[0][0]# 存储相似度得分similarity_scores[theme] = {"company_similarity": company_similarity,"government_similarity": government_similarity,"document_similarity": document_similarity}# 输出结果
for theme, scores in similarity_scores.items():print(f"Theme: {theme}, Company Similarity: {scores['company_similarity']}, Government Similarity: {scores['government_similarity']}, Document Similarity: {scores['document_similarity']}")

http://www.mrgr.cn/news/13242.html

相关文章:

  • 如何使用ssm实现学生就业管理系统
  • 【UE 编译】UE C++工程的编译流程、与C++编译的区别
  • C语言04--数组超详解
  • 如何使用ssm实现开放式教学评价管理系统+vue
  • 【操作系统】实验:指示灯开关控制
  • std::futrue异步操作结果的三种搭配使用
  • 【大模型系列篇】预训练模型:BERT GPT
  • zookeeper集群安装
  • 什么是YAML?学这一篇就够了
  • 系统编程-多线程1
  • 学懂C++(四十三):深入剖析现代C++设计模式:从常用经典到前沿的全面解析
  • 关于异常断电后jmeter的jmx文件异常变成二进制文件并成功恢复的心酸历程
  • 如何使用ssm实现投稿系统+vue
  • 力扣3224.使差值相等的最少数组改动次数
  • ZooKeeper 的特性及其在分布式系统中的锁应用
  • FFmpeg源码:avio_read函数分析
  • 谷粒商城实战笔记-问题记录-Feign远程调用丢失请求头问题
  • 提升学术论文质量的智能助手:ChatGPT
  • 自动化常用元素定位
  • 找到K个最接近的元素(LeetCode)