当前位置: 首页 > news >正文

回归预测|基于北方苍鹰优化NGO-Transformer-GRU组合模型的数据预测Matlab程序多特征输入单输出

回归预测|基于北方苍鹰优化NGO-Transformer-GRU组合模型的数据预测Matlab程序多特征输入单输出

文章目录

  • 前言
    • 回归预测|基于北方苍鹰优化NGO-Transformer-GRU组合模型的数据预测Matlab程序多特征输入单输出
  • 一、NGO-Transformer-GRU模型
      • NGO-Transformer-GRU组合模型的数据预测
      • 1. NGO(北方苍鹰优化算法)
      • 2. Transformer
      • 3. GRU(门控递归单元)
      • 4. 综合建模流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

回归预测|基于北方苍鹰优化NGO-Transformer-GRU组合模型的数据预测Matlab程序多特征输入单输出

一、NGO-Transformer-GRU模型

NGO-Transformer-GRU组合模型的数据预测

NGO-Transformer-GRU 组合模型将北方苍鹰优化算法(NGO)、Transformer架构和门控递归单元(GRU)结合,用于复杂时序数据的预测。以下是详细的原理和流程:

1. NGO(北方苍鹰优化算法)

目的:优化模型参数,提高预测性能。

原理

  • 模拟苍鹰的猎食行为优化模型的超参数。
  • 包括种群初始化、适应度评估、选择和更新种群等步骤。

流程

  1. 初始化:生成初始种群。
  2. 评估:计算适应度(如预测误差)。
  3. 更新:通过猎食行为更新种群。
  4. 迭代:重复更新直到达到停止条件。

2. Transformer

目的:处理复杂的时序依赖,捕捉长期依赖。

原理

  • 采用自注意力机制对输入序列进行加权求和,捕捉序列中的重要信息。
  • 包括多个编码器和解码器层,处理长距离依赖关系。

流程

  1. 自注意力计算:计算每个输入位置的注意力权重。
  2. 加权求和:根据注意力权重加权输入特征。
  3. 位置编码:添加时间位置信息。

3. GRU(门控递归单元)

目的:处理序列数据的时序特征,捕捉时间依赖。

原理

  • GRU是LSTM的简化版本,具有更新门和重置门来控制信息流动。
  • 具有较少的参数,计算效率高。

流程

  1. 更新门:决定保留多少先前的信息。
  2. 重置门:决定舍弃多少先前的信息。
  3. 候选激活:生成新的候选特征。
  4. 合成输出:结合旧信息和新信息生成当前输出。

4. 综合建模流程

1. 数据预处理

  • 数据清洗:处理缺失值和异常值。
  • 特征提取:提取和标准化输入特征数据。

2. 模型构建

  • Transformer:处理时序特征,生成上下文表示。
  • GRU:捕捉序列中的时间依赖关系。

3. 参数优化

  • 使用 NGO 优化 Transformer 和 GRU 的超参数。

4. 模型训练

  • 输入数据:将特征数据输入 Transformer 和 GRU 模型。
  • 损失函数:使用均方误差(MSE)等损失函数进行训练。

5. 模型预测

  • 使用训练好的模型对新数据进行预测。

6. 模型评估

  • 评估模型的预测性能,如通过均方误差(MSE)等指标。

总结

NGO-Transformer-GRU 组合模型利用北方苍鹰优化算法优化模型参数,通过 Transformer 处理复杂的时序特征,GRU 处理时间依赖。模型的主要流程包括数据预处理、模型构建、参数优化、训练、预测和评估。

二、实验结果

NGO-Transformer-GRU回归预测结果
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

四、代码获取

私信即可 99米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出


http://www.mrgr.cn/news/10590.html

相关文章:

  • QT-五子棋游戏
  • 行业级API集成案例,巩固你的知识
  • 数智飞跃:EC金蝶一键联动,业务飙升新境界!
  • Oracle RAC 修改系统时区避坑指南(深挖篇)
  • WPF—数据模版绑定数据集合(listbox和panel)
  • 【数据结构】—— 树和二叉树
  • C++基础面试题 | 什么是C++的列表初始化?
  • 基于Linux系统和ncurses库的贪吃蛇小游戏
  • 【sql】加密所有的存储程式
  • 从0-1建一个webpack/vue项目,熟悉一下webpack知识点
  • 【AD9361 数字基带】多片基带内FPGA补偿 I/Q Rotation
  • 一文带你了解React Hooks
  • 基于django的影音播放网站 /基于python的影视网站/影视播放系统
  • 使用微软Detours库进行模块枚举
  • 深入探究linux文件IO
  • 阿里云ECS重启后自定义DNS配置丢失解决方法
  • 分享:一种基于NTP的网络时钟同步服务器
  • 鸿蒙内核源码分析(文件句柄篇) | 你为什么叫句柄
  • 在遍历过程中修改 List 的几种方式
  • 信息学奥赛知识点(十三)----树和二叉树(上)